Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 39, Problem 61PP
To determine
The particle other than negative muon which is created in the decay of negative pion.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
When a proton and an antiproton annihilate, the resulting energy can be used to create new particles. One possibility is the creation of electrically neutral particles called neutral pions. A neutral pion has a rest mass of 135 MeV/c2. How many neutral pions could be produced in the annihilation of a proton and an antiproton? Assume the proton and antiproton are moving very slowly as they collide.
Accelerators such as the Triangle Universities Meson Facility (TRIUMF) in British Columbia produce secondary beams of pions by having an intense primary proton beam strike a target. Such “meson factories” have been used for many years to study the interaction of pions with nuclei and,hence, the strong nuclear force. One reaction that occurs isπ+ + p → Δ++ → π+ + p , where the Δ++ is a very short-lived particle. The graph shows the probability of this reaction as a function of energy. The width of the bump is the uncertainty in energy due to the short lifetime of the Δ++ .(a) Find this lifetime.(b) Verify from the quark composition of the particles that thisreaction annihilates and then re-creates a d quark and a d antiquark by writing the reaction and decay in terms ofquarks.(c) Draw a Feynman diagram of the production and decay ofthe Δ++ showing the individual quarks involved.
If a muon at rest decays into an electron and two neutrinos, what is the total kinetic energy of the decay products? Assume that the neutrinos have zero rest mass.
Express your answer in millions of electron volts to four significant figures.
Chapter 39 Solutions
Essential University Physics (3rd Edition)
Ch. 39 - Prob. 1FTDCh. 39 - Prob. 2FTDCh. 39 - Prob. 3FTDCh. 39 - Prob. 4FTDCh. 39 - Prob. 5FTDCh. 39 - Prob. 6FTDCh. 39 - Prob. 7FTDCh. 39 - Prob. 8FTDCh. 39 - Name the fundamental force involved in (a) binding...Ch. 39 - Prob. 10FTD
Ch. 39 - Prob. 11FTDCh. 39 - Prob. 12FTDCh. 39 - Prob. 13FTDCh. 39 - Prob. 14FTDCh. 39 - Describe the origin of the cosmic microwave...Ch. 39 - Prob. 16FTDCh. 39 - Prob. 17FTDCh. 39 - The radiation that we observe as the cosmic...Ch. 39 - Prob. 19FTDCh. 39 - Prob. 20FTDCh. 39 - Prob. 21ECh. 39 - Prob. 22ECh. 39 - Prob. 23ECh. 39 - Prob. 24ECh. 39 - Prob. 25ECh. 39 - Prob. 26ECh. 39 - Prob. 27ECh. 39 - Prob. 28ECh. 39 - Prob. 29ECh. 39 - Prob. 30ECh. 39 - Prob. 31ECh. 39 - Prob. 32ECh. 39 - Prob. 33ECh. 39 - Prob. 34ECh. 39 - Prob. 35ECh. 39 - Prob. 36ECh. 39 - Prob. 37ECh. 39 - Prob. 38PCh. 39 - Prob. 39PCh. 39 - Prob. 40PCh. 39 - Prob. 41PCh. 39 - Prob. 42PCh. 39 - Prob. 43PCh. 39 - Prob. 44PCh. 39 - Prob. 45PCh. 39 - Prob. 46PCh. 39 - Prob. 47PCh. 39 - Prob. 48PCh. 39 - Prob. 49PCh. 39 - Prob. 50PCh. 39 - Prob. 51PCh. 39 - Prob. 52PCh. 39 - Prob. 53PCh. 39 - Prob. 54PCh. 39 - Prob. 55PCh. 39 - Prob. 56PCh. 39 - Prob. 57PCh. 39 - Prob. 58PCh. 39 - Prob. 59PCh. 39 - Prob. 60PCh. 39 - Prob. 61PPCh. 39 - Prob. 62PPCh. 39 - Prob. 63PPCh. 39 - Prob. 64PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The primary decay mode for the negative pion is +v . (a) What is the energy release in MeV in this decay? (b) Using conservation of momentum, how much energy does each of the decay products receive, given the is at rest when it decays? You may assume the muon antineutrino is massless and has momentum p = E/c , just like a photon.arrow_forward(a) Do all particles having strangeness also have at least one strange quark in them? (b) Do all hadrons with a strange quark also have nonzero strangeness?arrow_forwardThe K0 meson is an uncharged member of the particle “zoo” that decays into two charged pions according to K0 → π+ + π−. The pions have opposite charges, as indicated, and the same mass, mπ = 140 MeV/c2. Suppose that a K0 at rest decays into two pions in a bubble chamber in which a magnetic field of 2.0 T is present (see Fig. P2.22). If the radius of curvature of the pions is 34.4 cm, find (a) the momenta and speeds of the pions and (b) the mass of the K0 meson.arrow_forward
- An unstable particle, initially at rest, decays into a proton (rest energy 938.3 MeV) and a negative pion (rest energy 139.5 MeV). A uniform magnetic field of 0.250 T exists perpendicular to the velocities of the created particles. The radius of curvature of each track is found to be 1.33 m. What is the rest mass of the original unstable particle?arrow_forward(a) Show that the conjectured decay of the proton, violates conservation of baryon number and conservation of lepton number. (b) What is the analogous decay process for the antiproton?arrow_forwardA pion at rest (m = 273me) decays to a muon (m = 207me) and an antineutrino (mp 0). The reaction is written + v. Find (a) the kinetic energy of the muon and (b) the energy of the antineutrino in electron volts.arrow_forward
- Based on quark composition of a proton, show that its charge is +1.arrow_forward(a) Verify from its quark composition that the particle could be an excited state of the proton. (b) There is a spread of about 100 MeV in the decay energy of the interpreted as uncertainty due to its short lifetime. What is its approximate lifetime? (c) Does its decay proceed via the strong or weak force?arrow_forwardThe decay mode of the negative muon is (a) Find the energy released in MeV. (b) Verify that charge and lepton family numbers are conserved.arrow_forward
- A proton‑antiproton annihilation takes place, leaving two photons with a combined energy of 2.50 GeV. Find the kinetic energy Kp of the proton if the proton had the same kinetic energy as the antiproton. Find the kinetic energy Kp′ of the proton if the proton had 1.25 times as much kinetic energy as the antiproton.arrow_forward= Consider a proton that is incident on a target proton (at rest). What is the threshold energy needed to produce a Higg's Boson. Use the following estimates of the masses: mp 1 [GeV] and mµ = 125 [GeV]. The Higgs boson will eventually decay into leptons and protons (a particle physicist will tell you that the Higgs boson will decay through different channels). The threshold energy is the minimum energy needed for all these processes (channels) to be observed as confirmed in 2012 at the Large Hadron Collider (LHC).arrow_forwardConsider a proton that is incident on a target proton (at rest). What is the threshold energy needed to produce a Higg's Boson. Use the following estimates of the masses: m₂ = 1 [GeV] and my = 125 [GeV]. The Higgs boson will eventually decay into leptons and protons (a particle physicist will tell you that the Higgs bos m will decay through different channels). The threshold energy is the minimum energy needed for all these processes (channels) to be observed as confirmed in 2012 at the Large Ha tron Collider (LHC).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax