Essential University Physics (3rd Edition)
Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
bartleby

Concept explainers

Question
Book Icon
Chapter 39, Problem 51P

(a)

To determine

The size of a muonic atom.

(b)

To determine

The ground state energy of a muonic atom.

Blurred answer
Students have asked these similar questions
A muon is a short-lived particle. Muons are created by cosmic rays; they can also be created by particle accelerators. The muon is similar to an electron but has a larger mass: mμ ≈ 200me. During its brief lifetime, a muon can combine with a proton to create a system that is similar to atomic hydrogen called a muonic hydrogen atom. The larger mass of the muon makes some of the assumptions of the Bohr hydrogen atom treatment less accurate, but using the mathematics of the Bohr hydrogen atom to analyze this system will give approximate results that allow us to understand how the changing mass affects the properties of the system. How does the energy required to ionize a muonic hydrogen atom compare to that required to ionize a regular hydrogen atom?A. It is greater.B. It is approximately the same.C. It is less.
Although muons have a half-life of 2.2 µs, physical chemists have been able to construct various muonic elements out of them. Replacing the electron with a muon in hydrogen, what is the Bohr radius (in m) of this muonic hydrogen in the ground state? (The mass of a muon is 1.88 ✕ 10−28 kg.)
A muon is a short-lived particle. Muons are created by cosmic rays; they can also be created by particle accelerators. The muon is similar to an electron but has a larger mass: mμ ≈ 200me. During its brief lifetime, a muon can combine with a proton to create a system that is similar to atomic hydrogen called a muonic hydrogen atom. The larger mass of the muon makes some of the assumptions of the Bohr hydrogen atom treatment less accurate, but using the mathematics of the Bohr hydrogen atom to analyze this system will give approximate results that allow us to understand how the changing mass affects the properties of the system. The larger mass of the muon complicates an accurate mathematical treatment similar to that of the Bohr hydrogen atom becauseA. The de Broglie wavelength of the muon is shorter than that of the electron.B. The relatively small difference in mass between the muon and the proton means that we can’t ignore the motion of the proton.C. The short lifetime of the muon…
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning