Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 39, Problem 34E
To determine
The Hubble constant in SI units.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What is a rest-frame spectrum of a typical BCG?
What is the Hubble Time in Gyr, given the following values of Ho?
a. Ho= 50km/s/Mpc
b. Ho= 75km/s/Mpc
C. Ho= 100km/s/Mpc
What is the total energy of a proton whose kinetic energy
is 25 GeV? What is its wavelength?
Chapter 39 Solutions
Essential University Physics (3rd Edition)
Ch. 39 - Prob. 1FTDCh. 39 - Prob. 2FTDCh. 39 - Prob. 3FTDCh. 39 - Prob. 4FTDCh. 39 - Prob. 5FTDCh. 39 - Prob. 6FTDCh. 39 - Prob. 7FTDCh. 39 - Prob. 8FTDCh. 39 - Name the fundamental force involved in (a) binding...Ch. 39 - Prob. 10FTD
Ch. 39 - Prob. 11FTDCh. 39 - Prob. 12FTDCh. 39 - Prob. 13FTDCh. 39 - Prob. 14FTDCh. 39 - Describe the origin of the cosmic microwave...Ch. 39 - Prob. 16FTDCh. 39 - Prob. 17FTDCh. 39 - The radiation that we observe as the cosmic...Ch. 39 - Prob. 19FTDCh. 39 - Prob. 20FTDCh. 39 - Prob. 21ECh. 39 - Prob. 22ECh. 39 - Prob. 23ECh. 39 - Prob. 24ECh. 39 - Prob. 25ECh. 39 - Prob. 26ECh. 39 - Prob. 27ECh. 39 - Prob. 28ECh. 39 - Prob. 29ECh. 39 - Prob. 30ECh. 39 - Prob. 31ECh. 39 - Prob. 32ECh. 39 - Prob. 33ECh. 39 - Prob. 34ECh. 39 - Prob. 35ECh. 39 - Prob. 36ECh. 39 - Prob. 37ECh. 39 - Prob. 38PCh. 39 - Prob. 39PCh. 39 - Prob. 40PCh. 39 - Prob. 41PCh. 39 - Prob. 42PCh. 39 - Prob. 43PCh. 39 - Prob. 44PCh. 39 - Prob. 45PCh. 39 - Prob. 46PCh. 39 - Prob. 47PCh. 39 - Prob. 48PCh. 39 - Prob. 49PCh. 39 - Prob. 50PCh. 39 - Prob. 51PCh. 39 - Prob. 52PCh. 39 - Prob. 53PCh. 39 - Prob. 54PCh. 39 - Prob. 55PCh. 39 - Prob. 56PCh. 39 - Prob. 57PCh. 39 - Prob. 58PCh. 39 - Prob. 59PCh. 39 - Prob. 60PCh. 39 - Prob. 61PPCh. 39 - Prob. 62PPCh. 39 - Prob. 63PPCh. 39 - Prob. 64PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Edwin Hubble observed that the light from very distant galaxies was redshifted and that the farther away a galaxy was, the greater its redshift. What does this say about very distant galaxies? When Hubble first estimated the Hubble constant, galaxy distances were still very uncertain, and he got a value for H of about 600 km/s per Mpc. What would this have implied about the age of the universe? What problems would this have presented for cosmologists?arrow_forwarda)Define the term “standard candle” as used in cosmology. b)The flux is defined asf(Dlum) = L/4πD^2lumwhere L is the absolute luminosity and Dlum is the distance to the radiation source (youmay assume z ≪ 1).Assume that we have measured the flux to be f = 7.234 10^−23 Wm^−2 and the absoluteluminosity is given by L = 3.828 x10^26W. Calculate the luminosity distance D lum to the objectin Mpc.arrow_forwardA space based observatory collects light emitted by a given galaxy. The light was initially emitted with a frequency of 600*10^12Hz but the detected signal is red shifted by 40*10^12Hz How fast is the galaxy moving and in what direction? Show the algebraic form of any equation(s) that you apply and report your calculation in the correct units and with the correct number of significant figures.arrow_forward
- Name: Hubble Distances Redshift z parameter The relativistic redshift is parametrized by z and given by Δ In terms of the scale factor, 2= X do - de de 1+z= ao a (2) Problem 01. Find the redshift z for a Hydrogen spectral line originally at 656 nm which has been observed at a wavelength of 1.64 μm. Astro 001 Fall 2022 Problem 02. How much smaller was the universe when this light was emitted? U₁ = DHO Using the redshift to measure the velocity, we find D~ (1) 0.1 Hubble's Law Hubble's Law states that the recession velocity of a redshifted galaxy is given by the product of the distance and the Hubble constant. (3) ZC Ho where c = 3 x 108 m/s and Ho = 2.3 x 10-18 s in standard units. The standard measurement of the Hubble constant is Ho = 71 (km/s)/Mpc. Problem 03. What is the distance in Mpc and ly to the galaxy measured in problem 01? 1 pc = 3.26 ly.arrow_forwardWhat mechanism can simultaneously solve both the flatness and horizon problems in cosmology?arrow_forwardShow how the Hubble constant is used to make the simplest approximation for how long ago the Big Bang occurred {Assume a constant expansion rate}. (This is a qualitative question)arrow_forward
- (a) Calculate the approximate age of the universe from the average value of the Hubble constant, H0=20km/s . Mly. To do this, calculate the time it would take to travel 0.307 Mpc at a constant expansion rate of 20 km/s. (b) If somehow acceleration occurs, would the actual age of the universe be greater or less than that found here? Explain.arrow_forwardIn the Check Your Learning section of Example 27.1, you were told that several lines of hydrogen absorption in the visible spectrum have rest wavelengths of 410 nm, 434 nm, 486 nm, and 656 nm. In a spectrum of a distant galaxy, these same lines are observed to have wavelengths of 492 nm, 521 nm, 583 nm, and 787 nm, respectively. The example demonstrated that z=0.20 for the 410 nm line. Show that you will obtain the same redshift regardless of which absorption line you measure.arrow_forwardIf the smallest meaningful time interval is greater than zero, will the lines in Figure 34.9 ever meet?arrow_forward
- The lifetime of a muon is 2.20 ?s. If you measured its mass to be 105.7 MeV/c2, what would be the minimum (Heisenberg) uncertainty in this value? Sketch the situation, defining all of your variablesarrow_forward1. The tau lepton has a mass of ~2 GeV/c² and lives on average for 3x10-¹3s. If you try to measure its mass (i.e. rest energy), what is the best precision that you can obtain? The Z boson has a mass of ~90 GeV/c² and lives on average for 3x10-25 s. If you try to measure its mass, what is the best precision that you can obtain?arrow_forwardA galaxy in the constellation Pisces is 5210 Mly from the earth. (a) Use the Hubble law to calculate the speed at which this galaxy is receding from earth. (b) What redshifted ratio l0 /lS is expected for light from this galaxy?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax