Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 39, Problem 18FTD
The
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Astronomers can determine the heat of various areas of the universe by making observations about energy they emit. Gamma rays can be found in areas where there is a lot of star formation occurring.
What would you guess about the temperature of these areas? Explain why.Do you think there would be a lot of particles present? Explain why.
B6
Cosmic Microwave Background
8. The Cosmic Microwave Background (CMB) acts as a perfect black body whose energy spectrum(energy density per unit volume per unit frequency) is given by the expression : (image attached)
Chapter 39 Solutions
Essential University Physics (3rd Edition)
Ch. 39 - Prob. 1FTDCh. 39 - Prob. 2FTDCh. 39 - Prob. 3FTDCh. 39 - Prob. 4FTDCh. 39 - Prob. 5FTDCh. 39 - Prob. 6FTDCh. 39 - Prob. 7FTDCh. 39 - Prob. 8FTDCh. 39 - Name the fundamental force involved in (a) binding...Ch. 39 - Prob. 10FTD
Ch. 39 - Prob. 11FTDCh. 39 - Prob. 12FTDCh. 39 - Prob. 13FTDCh. 39 - Prob. 14FTDCh. 39 - Describe the origin of the cosmic microwave...Ch. 39 - Prob. 16FTDCh. 39 - Prob. 17FTDCh. 39 - The radiation that we observe as the cosmic...Ch. 39 - Prob. 19FTDCh. 39 - Prob. 20FTDCh. 39 - Prob. 21ECh. 39 - Prob. 22ECh. 39 - Prob. 23ECh. 39 - Prob. 24ECh. 39 - Prob. 25ECh. 39 - Prob. 26ECh. 39 - Prob. 27ECh. 39 - Prob. 28ECh. 39 - Prob. 29ECh. 39 - Prob. 30ECh. 39 - Prob. 31ECh. 39 - Prob. 32ECh. 39 - Prob. 33ECh. 39 - Prob. 34ECh. 39 - Prob. 35ECh. 39 - Prob. 36ECh. 39 - Prob. 37ECh. 39 - Prob. 38PCh. 39 - Prob. 39PCh. 39 - Prob. 40PCh. 39 - Prob. 41PCh. 39 - Prob. 42PCh. 39 - Prob. 43PCh. 39 - Prob. 44PCh. 39 - Prob. 45PCh. 39 - Prob. 46PCh. 39 - Prob. 47PCh. 39 - Prob. 48PCh. 39 - Prob. 49PCh. 39 - Prob. 50PCh. 39 - Prob. 51PCh. 39 - Prob. 52PCh. 39 - Prob. 53PCh. 39 - Prob. 54PCh. 39 - Prob. 55PCh. 39 - Prob. 56PCh. 39 - Prob. 57PCh. 39 - Prob. 58PCh. 39 - Prob. 59PCh. 39 - Prob. 60PCh. 39 - Prob. 61PPCh. 39 - Prob. 62PPCh. 39 - Prob. 63PPCh. 39 - Prob. 64PP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Can a set of forces have a net torque that is zero and a net force that is not zero?
University Physics Volume 1
A garden hose waters a garden. Water in a car engine cools the engine. Which of these two is analogous to an el...
Conceptual Integrated Science
The human body contains about 1014 cells, and the diameter of a typical cell is about 10 m Like all ordinary ma...
Essential University Physics: Volume 1 (3rd Edition)
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective
Does it ever make sense to say that one object is twice as hot as another? Does it matter whether one is referr...
An Introduction to Thermal Physics
Predict the relative brightness of bulbs B1,B1,andB3 in the circuits shown. (A dashed box has been drawn around...
Tutorials in Introductory Physics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Why is it difficult to determine where cosmic rays come from?arrow_forwardFind the wavelength (in mm) of maximum intensity of the cosmic microwave background radiation observed today. (Hint: Use Wien's law, λmax = 2.90 x 10^6 nm*k/T ______mmarrow_forwardWhat are cosmic rays primarily composed of?arrow_forward
- Please answer within 90 minutes.arrow_forwardWhat was the wavelength of maximum intensity for radiation from the gas of the big bang at the time of recombination? By what factor is that different from the wavelength of maximum intensity of the cosmic microwave background radiation observed now?arrow_forwardUse Wien’s law to answer the following questions: (a) The cosmic background radiation peaks in intensity at a wavelength of 1.1 mm. To what temperature does this correspond? (b) About 379 000 y after the big bang, the universe became transparent to electromagnetic radiation. Its temperature then was 2970 K.What was the wavelength at which the background radiation was then most intense?arrow_forward
- 1. The current (critical) density of our universe is pe = 10-26kg/m³. Assume the universe is filled with cubes with equal size that each contain one person of m = 100kg. What would the length of the side of such a cube have to be in order to give the correct critical density? How many hydrogen atoms would you need in a box of 1 m³ to reach the critical density? The matter we know, which consists mostly of hydrogen, constitutes only 4.8% of the current critical energy density of our universe. So how many hydrogen atoms are actually in a box of 1 m3 in our universe? Deep space is very empty and a much better vacuum than we can obtain on earth in a laboratory.arrow_forwardSince you are made mostly of water, you are very efficient at absorbing microwave photons. If you were in intergalactic space, how many CMB photons would you absorb per second? (The assumption that you are spherical will be useful.) What is the rate, in watts, at which you would absorb radiative energy from the CMB?arrow_forwardHi, can you please assist with C? & For reference: A = 0.0011 m B = 1.807 x 10^-22 Jarrow_forward
- The Andromeda Galaxy, M31, is the closest large spiral galaxy to our Milky Way. When we look at its chemical spectrum, we see that its hydrogen alpha emission line (Hα) has an observed wavelength of λobs = 655 nm.-Calculate z, being careful with the sign.-How fast is it moving in km/s?-Is it redshifted or blueshifted? Is it moving towards or away from us? answer to three significant figures.arrow_forwardWhat do the results from the Wilkinson Microwave Anisotropy Probe (WMAP) observations tell cosmologists?arrow_forwardAssume that the radiation coming from Andromeda is all due to solar-like stars (MV, = 4.83). How many stars are there in the Andromeda galaxy according to this approximation?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
General Relativity: The Curvature of Spacetime; Author: Professor Dave Explains;https://www.youtube.com/watch?v=R7V3koyL7Mc;License: Standard YouTube License, CC-BY