Physics for Scientists and Engineers
6th Edition
ISBN: 9781429281843
Author: Tipler
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 38, Problem 65P
To determine
Show that the average energy at
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider two immiscible liquids such as water and oil. If a spherical oil molecule of radius r is taken out of the oil phase and placed in the water phase, the unfavorable energy of this transfer is proportional to the area of the solute (oil) molecule newly exposed to the solvent (water) multiplied by the interfacial energy, i, of the oil-water interface. The interfacial energy of the bulk cyclohexane-water interface is i = 50 mJ m-2, and the radius of a cyclohexane molecule is 0.28 nm. Using Boltzmann distribution, estimate the solubility of cyclohexane in water at 25 C in units of mol L-1.The concentration of water in water phase is 55.5 mol L-1.
hello what sort of calculator did you use? i am using ti 84 and ti 89 still not getting the answer even when i use you numbers. i am a bit confused about that.
The average electricity consumption of a house in
Gainesville is known to be 1,036 kWh in a month
(One month = 30 days). They would like to install
solar panels of 30 % efficiency to generate this
electricity. Given that the average solar power
density in Gainesville is 5.47 kWh/m2/day, how much
surface area must the panels occupy? Calculate the
result in m² but do not write the unit. Round off you
E swer to a whole number (zero decimal place.)
Chapter 38 Solutions
Physics for Scientists and Engineers
Ch. 38 - Prob. 1PCh. 38 - Prob. 2PCh. 38 - Prob. 3PCh. 38 - Prob. 4PCh. 38 - Prob. 5PCh. 38 - Prob. 6PCh. 38 - Prob. 7PCh. 38 - Prob. 8PCh. 38 - Prob. 9PCh. 38 - Prob. 10P
Ch. 38 - Prob. 11PCh. 38 - Prob. 12PCh. 38 - Prob. 13PCh. 38 - Prob. 14PCh. 38 - Prob. 15PCh. 38 - Prob. 16PCh. 38 - Prob. 17PCh. 38 - Prob. 18PCh. 38 - Prob. 19PCh. 38 - Prob. 20PCh. 38 - Prob. 21PCh. 38 - Prob. 22PCh. 38 - Prob. 23PCh. 38 - Prob. 24PCh. 38 - Prob. 25PCh. 38 - Prob. 26PCh. 38 - Prob. 27PCh. 38 - Prob. 28PCh. 38 - Prob. 29PCh. 38 - Prob. 30PCh. 38 - Prob. 31PCh. 38 - Prob. 32PCh. 38 - Prob. 33PCh. 38 - Prob. 34PCh. 38 - Prob. 35PCh. 38 - Prob. 36PCh. 38 - Prob. 37PCh. 38 - Prob. 38PCh. 38 - Prob. 39PCh. 38 - Prob. 40PCh. 38 - Prob. 41PCh. 38 - Prob. 42PCh. 38 - Prob. 43PCh. 38 - Prob. 44PCh. 38 - Prob. 45PCh. 38 - Prob. 46PCh. 38 - Prob. 47PCh. 38 - Prob. 48PCh. 38 - Prob. 49PCh. 38 - Prob. 50PCh. 38 - Prob. 51PCh. 38 - Prob. 52PCh. 38 - Prob. 53PCh. 38 - Prob. 54PCh. 38 - Prob. 55PCh. 38 - Prob. 56PCh. 38 - Prob. 57PCh. 38 - Prob. 58PCh. 38 - Prob. 59PCh. 38 - Prob. 60PCh. 38 - Prob. 61PCh. 38 - Prob. 62PCh. 38 - Prob. 63PCh. 38 - Prob. 64PCh. 38 - Prob. 65PCh. 38 - Prob. 66PCh. 38 - Prob. 67PCh. 38 - Prob. 68PCh. 38 - Prob. 69PCh. 38 - Prob. 70PCh. 38 - Prob. 71PCh. 38 - Prob. 72PCh. 38 - Prob. 73PCh. 38 - Prob. 74PCh. 38 - Prob. 75PCh. 38 - Prob. 76P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- wouldn't it be -7.5J, if you consider ground as 0 and anythng higher is postive, the jar losses energy right?arrow_forwardplease show the work for a,b,carrow_forwardOne model for the potential energy of a two-atom molecule, where the atoms are separated by a distance r, is U(r) = U₁[(¹)¹² – ()] where ro = 0.8 nm and ₹₁ = 6.1 eV. 19 Note: 1 eV = 1.6 × 10-¹⁹ J. Some helpful units: [Force] = eV/nm [Energy] = eV [distance] = nm Equilibrium Distance What is the distance between the atoms when the molecule is in stable equilibrium? Click here for a hint req Hint: Hint: Hint: Hint: Hint: Force If the distance between the atoms increases from equilibrium by r₁ = 0.35 nm, then what is the force from one atom on the other associated with this potential energy? (Enter your answer as postive if they repel each other, and negative if they attract.) Fr(req+r₁) Hint: 0.89105934nm Hint:arrow_forward
- Consider the initial value problemarrow_forwardPlease please compute the percent difference please answer fastarrow_forwardIf you are asked to perform the Hooke's law lab on Moon and on Earth surface, assume that for a specific spring, you indicate kç as the spring constant on Earth, and kM, that on Moon. Therefore, O kE = kM O ke has nothing to do with kM O kE kMarrow_forward
- Consider a system containing N distinct, stationary and non-interacting particles. Each atom has only two energy levels 0 and ξ>0. If the average energy per atom E/N for N is close to 0 determine (a). Sum of microstates (b) entropy per atomarrow_forwardOne description of the potential energy of a diatomic molecule is given by the Lennard–Jones potential, U = (A)/(r12) - (B)/(r6)where A and B are constants and r is the separation distance between the atoms. For the H2 molecule, take A = 0.124 x 10-120 eV ⋅ m12 and B = 1.488 x 10-60 eV ⋅ m6. Find (a) the separation distance r0 at which the energy of the molecule is a minimum and (b) the energy E required to break up theH2 molecule.arrow_forwardA hot water heater in a residential home runs for an average of 3.2 hours per day with a heat energy input of 3.7 kW. What would be the annual cost for hot water in this home using a gas hot water heater if the cost of natural gas is $0.33/m3? The gas water heater can get 23 MJ of energy from 1 m3 of natural gas. [round your final answer to zero decimal places]?arrow_forward
- A hot water heater in a residential home runs for an average of 2.2 hours per day with a heat energy input of 3.7 kW. What would be the annual cost for hot water in this home using a gas hot water heater if the cost of natural gas is $0.33/m3? The gas water heater can get 23 MJ of energy from 1 m3 of natural gas. [round your final answer to zero decimal places]?arrow_forwardThe exact differential for the Gibbs energy is given by dG = -SdT + VdP. The form of this differential implies which of the following relationships? O (7),- (), ƏG Әт ƏG др P T (37), - - (-), P T as ( x) - (*), = др T (327), = -(0)₁ == P Tarrow_forwardOne model for the potential energy of a two-atom molecule, where the atoms are separated by a distance r, is U(r) = Uo[(¹) ¹2 – ( )²] where ro = 0.8 nm and U₁ = 6.1 eV. Note: 1 eV = 1.6 × 10-19 J. Some helpful units: [Force] = eV/nm [Energy] = eV [distance] = nm Equilibrium Distance What is the distance between the atoms when the molecule is in stable equilibrium? Click here for a hint T'eq Hint: Hint: Hint: Hint: Hint: Hint: Force If the distance between the atoms increases from equilibrium by r₁ = 0.35 nm, then what is the force from one atom on the other associated with this potential energy? (Enter your answer as postive if they repel each other, and negative if they attract.) Fr(req+r₁) Hint: Hint: 0.89105934nm Kinetic Energy Hint: The atoms are oscillating back and forth. The maximum separation of the atoms is r₂ = 2 nm. What is the kinetic energy of the atoms when they are separated by the equilibrium distance? Click here for a hint K(req) Hint: Hint: = -1.288eV/nm 3.99eVarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning