Physics for Scientists and Engineers
6th Edition
ISBN: 9781429281843
Author: Tipler
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Question
Chapter 38, Problem 27P
(a)
To determine
The speed of
(b)
To determine
The speed of conduction electron for
(c)
To determine
The speed of conduction electron for
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Asap plzzzzz
A silicon ingot is stained with (
Nd = 10 ^ 16atom / cm ^ 3) ars
enic atoms.
A) Get the density of the carrier
s and b) Get the Fermi level at r
oom temperature T = 300k?
The Fermi energies of two metals X and Y are 5 eV and 7eV and their Debye
temperatures are 170 K and 340 K , respectively. The molar specific heats of these
metals
volume
at
low
temperatures
be
written
as
at
constant
can
(C, )x =rxT + AxT' and (C, ), =7yT+ A,T³ where y and A are constants. Assuming
that the thermal effective mass of the electrons in the two metals are same, which of the
following is correct?
7 Ax
= 8
(b)
Y x
7 Ax
1
(a)
= -
= -
5'Ay
5' A,
8.
Y
Y x
5 Аx
1
Y x
5 Аx
(c)
(d)
= 8
= -
7' Ay
7' Ay
8.
II
II
Chapter 38 Solutions
Physics for Scientists and Engineers
Ch. 38 - Prob. 1PCh. 38 - Prob. 2PCh. 38 - Prob. 3PCh. 38 - Prob. 4PCh. 38 - Prob. 5PCh. 38 - Prob. 6PCh. 38 - Prob. 7PCh. 38 - Prob. 8PCh. 38 - Prob. 9PCh. 38 - Prob. 10P
Ch. 38 - Prob. 11PCh. 38 - Prob. 12PCh. 38 - Prob. 13PCh. 38 - Prob. 14PCh. 38 - Prob. 15PCh. 38 - Prob. 16PCh. 38 - Prob. 17PCh. 38 - Prob. 18PCh. 38 - Prob. 19PCh. 38 - Prob. 20PCh. 38 - Prob. 21PCh. 38 - Prob. 22PCh. 38 - Prob. 23PCh. 38 - Prob. 24PCh. 38 - Prob. 25PCh. 38 - Prob. 26PCh. 38 - Prob. 27PCh. 38 - Prob. 28PCh. 38 - Prob. 29PCh. 38 - Prob. 30PCh. 38 - Prob. 31PCh. 38 - Prob. 32PCh. 38 - Prob. 33PCh. 38 - Prob. 34PCh. 38 - Prob. 35PCh. 38 - Prob. 36PCh. 38 - Prob. 37PCh. 38 - Prob. 38PCh. 38 - Prob. 39PCh. 38 - Prob. 40PCh. 38 - Prob. 41PCh. 38 - Prob. 42PCh. 38 - Prob. 43PCh. 38 - Prob. 44PCh. 38 - Prob. 45PCh. 38 - Prob. 46PCh. 38 - Prob. 47PCh. 38 - Prob. 48PCh. 38 - Prob. 49PCh. 38 - Prob. 50PCh. 38 - Prob. 51PCh. 38 - Prob. 52PCh. 38 - Prob. 53PCh. 38 - Prob. 54PCh. 38 - Prob. 55PCh. 38 - Prob. 56PCh. 38 - Prob. 57PCh. 38 - Prob. 58PCh. 38 - Prob. 59PCh. 38 - Prob. 60PCh. 38 - Prob. 61PCh. 38 - Prob. 62PCh. 38 - Prob. 63PCh. 38 - Prob. 64PCh. 38 - Prob. 65PCh. 38 - Prob. 66PCh. 38 - Prob. 67PCh. 38 - Prob. 68PCh. 38 - Prob. 69PCh. 38 - Prob. 70PCh. 38 - Prob. 71PCh. 38 - Prob. 72PCh. 38 - Prob. 73PCh. 38 - Prob. 74PCh. 38 - Prob. 75PCh. 38 - Prob. 76P
Knowledge Booster
Similar questions
- At what temperature do 1.30% of the conduction electrons in lithium (a metal) have energies greater than the Fermi energy EF, which is 4.70 eV?arrow_forwardConsider the density of states N(E) of a conductor. (a) Obtain an analytical expression for the density of states at Fermi energy N(E_F) as a function of m and n, where m is the electron mass and n is the number of conduction electrons per unit volume. This expression should be in units of m^{ -2}eV^{-1} (meter^{-2}. electron-Volt^{-1}). (b) Calculate the numerical value of N(E_F) for Copper. To estimate the value of n, consider the following data for Copper: molar mass 64.54 g/mol and density 8.96 g/cm^{3}. (c) Compare the result of part (b) with the result obtained from the N(E) x E curve and the analytical expression for N(E). Do the values agree?arrow_forwardConsider a density of states N(E) of a conductor. (a) Obtain an analytical expression for the density of states at Fermi energy N(E_F) as a function of m and n, where m is the electron mass and n is the number of conduction electrons per unit volume. This expression should be in units of m^{ -2}eV^{-1} (mass^{-2}. electron-Volt^{-1}). (b) Calculation or numerical value of N(E_F) for Copper. To estimate the value of n, consider the following data for copper: molar mass 64.54 g/mol and density 8.96 g/cm^{3}. (c) Compare the result of item (b) with the result obtained from the N(E) x E curve and analytical expression for N(E). Do the values agree?arrow_forward
- Asaplikearrow_forwardSilicon is doped with phosphorus atoms (column V of Mendeleev table) with a concentration of 1018 cm-3 a- What is, at 27 °C, the electron density in doped Si. Use this result to derive the hole density. Which type of semiconductor is obtained? b- Calculate, at 27 °C, the position of the Fermi level EF and plot the band diagram.arrow_forwardAn atom’s nucleus is a collection of fermions— protons and neutrons. (a) In calculating the Fermi energy in a nucleus, the protons and neutrons must be considered separately. Why? (b) Find the Fermi energy of (i) the protons and (ii) the neutrons in a uranium nucleus, which has a radius of 7.4 x 10-15 m and contains 92 protons and 146 neutrons.arrow_forward
- JA silicon wafer is doped with 1015 cm 3 donor atoms. Assume light generates density of electrons and holes equal to 1018 cm-3.Calculate the total electron and hole concentrations and location of the quasi-Fermi levels for the electrons and holes with respect to the intrinsic Fermi level. (n = 1x1010 cm-3, Ne = 2.8x1019 cm-3, Ny = 1.04x1019 cm3, T = 300K). %3Darrow_forwardCalculatea) the drift mobility b) the mean scattering timearrow_forwardA state 63 meV above the Fermi level has a probability of occupancy of 0.090.What is the probability of occupancy for a state 63 meV below the Fermi level?arrow_forward
- Starting with the Fermi energy given in Table , estimate the number of conduction electrons per atom for aluminum, which has density 2.70 x 103 kg/m3 at T = 300 Karrow_forwardNo handwrittenarrow_forwardThe density of sodium metal at room temperature is 0.95 g/cm³. Assuming that there is one conduction electron per sodium atom, calculate the Fermi energy and Fermi tempera- ture of sodium.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax