Physics for Scientists and Engineers
6th Edition
ISBN: 9781429281843
Author: Tipler
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Question
Chapter 38, Problem 38P
To determine
The energy gap for semiconductor.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In a certain semiconductor, the valence band can be approximated by the function E(k) = Eo ak² and the
conduction band can be described by the function E(k)= E₁ + 3k². Here E(k) is the electron energy and k is the
wavevector. Plot E(k) for the two bands. What is the bandgap of this semiconductor? Is this a direct
or indirect bandgap semiconductor?
A ALAS semiconductor crystal has a lattice constant of a = 0.13 nm, the volume density of As
atoms in this crystal will be:
O 3.641e24 /cm^3
2.048e30 /cm^3
O 1.821e24 /cm^3
O 3.550e16 /cm^3
O 1.593e24 /cm^3
Most solar cells are semiconductor-based. If most solar radiation has a wavelength of less than 1m, what should the band gap of the solar cell material be? Silicon has a band gap of 1.14 eV. Is silicon a suitable solar cell material?
Chapter 38 Solutions
Physics for Scientists and Engineers
Ch. 38 - Prob. 1PCh. 38 - Prob. 2PCh. 38 - Prob. 3PCh. 38 - Prob. 4PCh. 38 - Prob. 5PCh. 38 - Prob. 6PCh. 38 - Prob. 7PCh. 38 - Prob. 8PCh. 38 - Prob. 9PCh. 38 - Prob. 10P
Ch. 38 - Prob. 11PCh. 38 - Prob. 12PCh. 38 - Prob. 13PCh. 38 - Prob. 14PCh. 38 - Prob. 15PCh. 38 - Prob. 16PCh. 38 - Prob. 17PCh. 38 - Prob. 18PCh. 38 - Prob. 19PCh. 38 - Prob. 20PCh. 38 - Prob. 21PCh. 38 - Prob. 22PCh. 38 - Prob. 23PCh. 38 - Prob. 24PCh. 38 - Prob. 25PCh. 38 - Prob. 26PCh. 38 - Prob. 27PCh. 38 - Prob. 28PCh. 38 - Prob. 29PCh. 38 - Prob. 30PCh. 38 - Prob. 31PCh. 38 - Prob. 32PCh. 38 - Prob. 33PCh. 38 - Prob. 34PCh. 38 - Prob. 35PCh. 38 - Prob. 36PCh. 38 - Prob. 37PCh. 38 - Prob. 38PCh. 38 - Prob. 39PCh. 38 - Prob. 40PCh. 38 - Prob. 41PCh. 38 - Prob. 42PCh. 38 - Prob. 43PCh. 38 - Prob. 44PCh. 38 - Prob. 45PCh. 38 - Prob. 46PCh. 38 - Prob. 47PCh. 38 - Prob. 48PCh. 38 - Prob. 49PCh. 38 - Prob. 50PCh. 38 - Prob. 51PCh. 38 - Prob. 52PCh. 38 - Prob. 53PCh. 38 - Prob. 54PCh. 38 - Prob. 55PCh. 38 - Prob. 56PCh. 38 - Prob. 57PCh. 38 - Prob. 58PCh. 38 - Prob. 59PCh. 38 - Prob. 60PCh. 38 - Prob. 61PCh. 38 - Prob. 62PCh. 38 - Prob. 63PCh. 38 - Prob. 64PCh. 38 - Prob. 65PCh. 38 - Prob. 66PCh. 38 - Prob. 67PCh. 38 - Prob. 68PCh. 38 - Prob. 69PCh. 38 - Prob. 70PCh. 38 - Prob. 71PCh. 38 - Prob. 72PCh. 38 - Prob. 73PCh. 38 - Prob. 74PCh. 38 - Prob. 75PCh. 38 - Prob. 76P
Knowledge Booster
Similar questions
- The gap between valence and conduction bands in diamond is 5.47 eV.What is the maximum wavelength of a photon that can excite an electron from the top of the valence band into the conduction band? In what region of the electromagnetic spectrum does this photon lie?arrow_forwardBecause of its semiconducting properties, CdSCdS is sometimes used in electronic devices. The band gap energy for CdSCdS is 2.40 eVeV . What is wavelength of a photon with this energy?arrow_forwardQuestion 11: A p-n photodiode is fabricated from a semiconductor with band gap of 2.8 ev. Can it detect a wavelength of 6000 nm?arrow_forward
- 2arrow_forwardWhen an electron in the compound semiconductor AlAs makes a transition from the conduction band to the valence band, a 574-nm photon is emitted. What is the size of the band gap?arrow_forwardK: Estimate the ratio of the electron densities in the conduction bands of silicon (Eg 1.14 eV) and gallium arsenide (Eg = 1.42 eV) at 400 K.arrow_forward
- Which statement about the intrinsic carrier concentration in a semiconductor material is FALSE? The intrinsic carrier concentration is exponentially dependent on the inverse of the temperature of the semiconductor material. In an intrinsic semiconductor material, the concentration of electrons in the conduction band is equal to the concentration holes in the valence band. The intrinsic carrier concentration of a semiconductor material at a constant temperature depends on the Fermi energy. The intrinsic Fermi energy is positioned near the center of the bandgap for an intrinsic semiconductor.arrow_forwardThe plot of the E field with respect to x in a metal semiconductor junction at 300K is shown in the figure. The semiconductor is Si and E(0)=-2x10* V/cm and xo-0.2x10 cm. What is the semiconductor type and built in potential value. レEo) O a. n type 200 mV O b. n type 800 mv Oc p type 400 mV Od. p type 200 mV O e. n type 400 mV Of. p type 800 mvarrow_forwardAn LED emits light with a wavelength of 500 nm (500x10-9m). What is the band gap energy in electron Volts? Hint: recall Eq. (2) and 1 eV= 1.6 x10-19 J 1.2 eV 2.5 eV 3.3 eV 4.1 eV 5.5 eVarrow_forward
- A light-emitting diode made of the semiconductor GaAsP gives off red light (λ= 650 nm). Determine the energy gap for this semiconductor. .arrow_forwardAn n-type semiconductor material, which contains the 1016 electrons/cm³ and the charge carrier mobility is 1100 cm²/Vs. (i) Determine resistivity of the n-type semiconductor material. the conductivity and the (ii) Determine the diffusion coefficient at room temperature. (iii) Evaluate the Einstein relation for the majority charge carrier in n-type material.arrow_forwardIn the fabrication of a p-type semiconductor, elemental boron is diffused a small distance into a solid crystalline silicon wafer. The boron concentration within the solid silicon determines semiconducting properties of the material. A physical vapor deposition process keeps the concentration of elemental boron at the surface of the wafer equal to 5.0 x 1020 atoms boron/cm3 silicon. In the manufacture of a transistor, it is desired to produce a thin film of silicon doped to a boron concentration of at least 1.7 x 1019 atoms boron/cm3 silicon at a depth of 0.20 microns (µm) from the surface of the silicon wafer. It is desired to achieve this target within a 30-min processing time. The density of solid silicon can be stated as 5.0 x 1022 atoms Si/ cm3 solid. (a) At what temperature must the boron-doping process be operated? It is known that the temperature dependence of the diffusion coefficient of boron (A) in silicon (B) is given by Where Do=0.019 cm2/s and Qo=2.74 x 105…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning