Physics for Scientists and Engineers
Physics for Scientists and Engineers
6th Edition
ISBN: 9781429281843
Author: Tipler
Publisher: MAC HIGHER
Question
Book Icon
Chapter 38, Problem 54P

(a)

To determine

The resistance for small reverse-bias voltages.

(a)

Expert Solution
Check Mark

Answer to Problem 54P

The resistance for small reverse-bias voltages is 25 .

Explanation of Solution

Given:

The saturation current is I0= 1.0 nA .

The value of kT=0.025eV .

Formula used:

The expression for Ohm’s Law is

  R=VbI

Here, R is the resistance, Vb is the voltage and I is the current in the circuit.

The expression for current in semiconductor is,

  I=I0(eeVb/kT1)

Calculation:

For small reverse-bias voltages i.e eVb<<kT

  eeVb/kT11+eVbkT1=eVbkT

The expression for current in semiconductor is then reduced to,

  I=I0(eeVb/kT1)=I0eVbkT

The expression for Ohm’s Law is then derived as,

  R=VbI0eVbkT=kTeI0

The resistance is further calculated as,

  R=kTeI0=(0.025eV)(1.6×1019J/eV)(1.6×1019C)(1.0×109A)=25

Conclusion:

Therefore, the resistance for small reverse-bias voltages is 25 .

(b)

To determine

The resistance for reverse bias of 0.50 V

(b)

Expert Solution
Check Mark

Answer to Problem 54P

The resistance for reverse bias of 0.50 V is 5.0×108Ω .

Explanation of Solution

Formula used:

The resistance for reverse bias of 0.50 V is,

  R=VbI0(eeVb/kT1)

Calculation:

Evaluating the term eVbkT for Vb=0.50V

  eVbkT=(1.6×1019C)(0.50V)(0.025eV)(1.6×1019J/eV)=19.8

The resistance for reverse bias of 0.50 V is calculated as,

  R=VbI0(eeVb/kT1)=0.50V(1.0×109A)(e19.81)=5.0×108Ω

Conclusion:

Therefore, the resistance for reverse bias of 0.50 V is 5.0×108Ω .

(c)

To determine

The resistance for a 0.50V forward bias and the corresponding current.

(c)

Expert Solution
Check Mark

Answer to Problem 54P

The resistance for forward bias of 0.50 V is 1.3Ω and corresponding current is 0.38A .

Explanation of Solution

Formula used:

The resistance for forward bias of 0.50 V is,

  R=VbI0(eeVb/kT1)

Calculation:

Evaluating the term eVbkT for Vb=0.50V

  eVbkT=(1.6×1019C)(0.50V)(0.025eV)(1.6×1019J/eV)=19.8

The resistance for reverse bias of 0.50 V is calculated as,

  R=VbI0(eeVb/kT1)=0.50V(1.0×109A)(e19.81)=1.3Ω

Current is calculated from Ohm’s Law,

  I=VR=0.50V1.3Ω=0.38A

Conclusion:

Therefore, the resistance for forward bias of 0.50 V is 1.3Ω and corresponding current is 0.38A .

(d)

To determine

The AC resistance for a 0.50V forward bias voltage.

(d)

Expert Solution
Check Mark

Answer to Problem 54P

The AC resistance for forward bias of 0.50 V is 63 .

Explanation of Solution

Formula used:

The resistance for forward bias of 0.50 V is,

  R=VbI0(eeVb/kT1)

The AC resistance is expressed as,

  Rac=dVdI=(dIdV)1

Calculation:

The AC resistance is calculated as,

  Rac={ddV(I0(eeVb/kT1))}1={eI0kTeeVb/kT}1=kTeI0eeVb/kT=(25)e19.8

The calculation is further simplified as

  Rac=25×106Ω×2.5×109Ω=63

Conclusion:

Therefore, the AC resistance for forward bias of 0.50 V is 63 .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The rectangular loop of wire shown in the figure (Figure 1) has a mass of 0.18 g per centimeter of length and is pivoted about side ab on a frictionless axis. The current in the wire is 8.5 A in the direction shown. Find the magnitude of the magnetic field parallel to the y-axis that will cause the loop to swing up until its plane makes an angle of 30.0 ∘ with the yz-plane. The answer is .028 T, I just need help understanding how to do it. Please show all steps.
A ray of light from an object you want to look at strikes a mirror so that the light ray makes a 32 degree angle relative to the normal line (a line perpendicular to the surface of the mirror at the point where the ray strikes the mirror). If you want to see the object in the mirror, what angle does your line of sight need to make relative to the normal line? Give your answer as the number of degrees.
Suppose you have a converging lens with a focal length of 65 cm. You hold this lens 120 cm away from a candle. How far behind the lens should you place a notecard if you want to form a clear image of the candle, on the card? Give your answer as the number of centimeters.
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
Intro Spectroscopy
Physics
ISBN:9781305221796
Author:PAVIA
Publisher:Cengage
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning