Physics (5th Edition)
5th Edition
ISBN: 9780321976444
Author: James S. Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 30, Problem 33PCE
(a)
To determine
The maximum kinetic energy of electron ejected from aluminum surface.
(b)
To determine
The range of frequency to provide no electrons.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Just after detonation, the fireball in a nuclear blast is approximately an ideal blackbody radiator with a surface temperature of about 1.0*107 K. (a) Find the wavelength at which the thermal radiation is maximum and (b) identify the type of electromagnetic wave corresponding to that wavelength. This radia-tion is almost immediately absorbed by the surrounding air molecules, which produces another ideal blackbody radiator with a surface temperature of about 1.0 * 105 K. (c) Find the wavelength at which the thermal radiation is maximum and (d) identify the type of electromagnetic wave corresponding to that wavelength.
When developing a night vision night vision equipment, you need to measure the work function for the surface of a metal, so you perform a photoelectric photoelectric effect experiment. You measure the cutoff potential V0 as a function of of the wavelength À of light striking the surface. The results appear in the following table. In your analysis, you use c = 2.998 X 10^8 m/s and e = 1.602 X 10^-19 C, which are values obtained in other experiments. (a) Select a way to represent your results graphicallyso that the data points are close to a straight line. Using this graph, find the slope and the intercept y of the straight line that best fits the data. (b) Use the results from (a) to calculate the Planck constant h (as a test of your data) and the work function ( in and V) of the surface. ( c) What is the longest wavelength of light that will produce photoelectrons from this surface? (d) What wavelength of wavelength of light is required to produce photoelectrons with a kinetic energy…
The most energetic electromagnetic waves in the universe are gamma-rays from gamma ray bursts (GRBs) from collapsing massive stars, observed by satellites with expected energies of 100 TeV (1 TeV = 1012eV).
(a) (10) What is the frequency of these energetic gamma ray photons? 1 eV = 1.60 x 10-19 J.
(b) What is the wavelength?
2. An astronaut on the International Space Station (ISS) is experimenting with a solid-state green laser communications system from on-orbit at 435 km altitude to the earth’s surface with a wavelength of 532nm and beam divergence (width) of 10-6 radians or 5.73 x 10-15° << 1°. The indices of refraction in free space and the atmosphere are n0 o 1.00000 ..., and na = 1.000293. Although density in the atmosphere varies continuously from the thinness of the upper atmosphere (near r ® 0) to higher density at the surface, refraction can be modeled as a ‘surface’ mid-atmosphere just like classic Snell’s Law calculations.
(a) When the ISS is directly…
Chapter 30 Solutions
Physics (5th Edition)
Ch. 30.1 - Prob. 1EYUCh. 30.2 - Prob. 2EYUCh. 30.3 - Prob. 3EYUCh. 30.4 - Prob. 4EYUCh. 30.5 - Prob. 5EYUCh. 30.6 - Prob. 6EYUCh. 30.7 - Prob. 7EYUCh. 30 - Prob. 1CQCh. 30 - Prob. 2CQCh. 30 - Prob. 3CQ
Ch. 30 - Prob. 4CQCh. 30 - Prob. 5CQCh. 30 - Prob. 6CQCh. 30 - Prob. 7CQCh. 30 - Prob. 8CQCh. 30 - Prob. 9CQCh. 30 - Prob. 10CQCh. 30 - Prob. 1PCECh. 30 - Prob. 2PCECh. 30 - Prob. 3PCECh. 30 - The Sun has a surface temperature of about 5800 K....Ch. 30 - Prob. 5PCECh. 30 - Prob. 6PCECh. 30 - (a) By what factor does the peak frequency change...Ch. 30 - Prob. 8PCECh. 30 - Prob. 9PCECh. 30 - Prob. 10PCECh. 30 - Prob. 11PCECh. 30 - Prob. 12PCECh. 30 - Prob. 13PCECh. 30 - Prob. 14PCECh. 30 - Prob. 15PCECh. 30 - Prob. 16PCECh. 30 - Prob. 17PCECh. 30 - Prob. 18PCECh. 30 - Prob. 19PCECh. 30 - Prob. 20PCECh. 30 - Prob. 21PCECh. 30 - Prob. 22PCECh. 30 - Prob. 23PCECh. 30 - Prob. 24PCECh. 30 - Prob. 25PCECh. 30 - Prob. 26PCECh. 30 - Prob. 27PCECh. 30 - Prob. 28PCECh. 30 - Prob. 29PCECh. 30 - Prob. 30PCECh. 30 - Prob. 31PCECh. 30 - Prob. 32PCECh. 30 - Prob. 33PCECh. 30 - Prob. 34PCECh. 30 - Prob. 35PCECh. 30 - BIO Owl Vision Owls have large, sensitive eyes for...Ch. 30 - Prob. 37PCECh. 30 - Prob. 38PCECh. 30 - Prob. 39PCECh. 30 - Prob. 40PCECh. 30 - Prob. 41PCECh. 30 - Prob. 42PCECh. 30 - Prob. 43PCECh. 30 - Prob. 44PCECh. 30 - Prob. 45PCECh. 30 - Prob. 46PCECh. 30 - Prob. 47PCECh. 30 - Prob. 48PCECh. 30 - Prob. 49PCECh. 30 - Prob. 50PCECh. 30 - Prob. 51PCECh. 30 - Prob. 52PCECh. 30 - Prob. 53PCECh. 30 - Prob. 54PCECh. 30 - Prob. 55PCECh. 30 - Prob. 56PCECh. 30 - Prob. 57PCECh. 30 - Prob. 58PCECh. 30 - Prob. 59PCECh. 30 - Prob. 60PCECh. 30 - Prob. 61PCECh. 30 - Prob. 62PCECh. 30 - Prob. 63PCECh. 30 - Prob. 64PCECh. 30 - Prob. 65PCECh. 30 - Prob. 66PCECh. 30 - Prob. 67PCECh. 30 - Prob. 68PCECh. 30 - Prob. 69PCECh. 30 - Prob. 70PCECh. 30 - Prob. 71PCECh. 30 - Prob. 72PCECh. 30 - Prob. 73PCECh. 30 - Prob. 74PCECh. 30 - Prob. 75PCECh. 30 - Prob. 76PCECh. 30 - Prob. 77PCECh. 30 - Prob. 78PCECh. 30 - Prob. 79PCECh. 30 - Prob. 80GPCh. 30 - Prob. 81GPCh. 30 - Prob. 82GPCh. 30 - Prob. 83GPCh. 30 - Prob. 84GPCh. 30 - Prob. 85GPCh. 30 - Prob. 86GPCh. 30 - Prob. 87GPCh. 30 - Prob. 88GPCh. 30 - Prob. 89GPCh. 30 - Prob. 90GPCh. 30 - Prob. 91GPCh. 30 - Prob. 92GPCh. 30 - Prob. 93GPCh. 30 - Prob. 94GPCh. 30 - Prob. 95GPCh. 30 - Prob. 96GPCh. 30 - Prob. 97PPCh. 30 - Prob. 98PPCh. 30 - Prob. 99PPCh. 30 - Prob. 100PPCh. 30 - Prob. 101PPCh. 30 - Prob. 102PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In developing night-vision equipment, you need to measure the work function for a metal surface, so you perform a photoelectric-effect experiment. You measure the stopping potential V0 as a function of the wavelength l of the light that is incident on the surface. You get the results in the table. In your analysis, you use c = 2.998 x 108m/s and e = 1.602 x 10-19 C, which are values obtained in other experiments. (a) Select a way to plot your results so that the data points fall close to a straight line. Using that plot, find the slope and y-intercept of the best-fit straight line to the data. (b) Use the results of part (a) to calculate Planck’s constant h (as a test of your data) and the work function (in eV) of the surface. (c) What is the longest wavelength of light that will produce photoelectrons from this surface? (d) What wavelength of light is required to produce photoelectrons with kinetic energy 10.0 eV?arrow_forwardSuppose you have an electric field as a result of superposition of two waves given by Ē(z, t) = Eo cos(kz – wt)â + Eo cos(kz+wt)â. - Find the instantaneous and time-averaged energy density, the instantaneous and time-averaged momentum density.arrow_forwardA dielectric material has an absorption coefficient of 0.25 cm−1. A plate of thickness 3 cm is made from this material, and light with intensity 20 W m−2 is incident on the front. Ignoring reflection losses, calculate the intensity transmitted through the plate.Give your answer as a decimal to 2 d.p.arrow_forward
- To measure temperatures, physicists often use the variation of intensity of EM radiation emitted by an object. The wavelength at which the intensity is greatest is given by the equation: λmaxT = 0.2898 cm.K where λmax is the wavelength of greatest intensity and T is the temperature of the object in kelvins. In 1965, microwave radiation peaking at λmax = 0.107 cm was discovered coming in all directions from space. To what temperature, in a) K b) °C c) °F, does this wavelength correspond?arrow_forwardA satellite in Earth orbit maintains a panel of solar cells of area 2.60 m2 perpendicular to the direction of the Sun’s light rays. The intensity of the light at the panel is 1.39 kW/m2. (a) At what rate does solar energy arrive at the panel? (b) At what rate are solar photons absorbed by the panel? Assume that the solar radiation is monochromatic, with a wavelength of 550 nm, and that all the solar radiation striking the panel is absorbed. (c) How long would it take for a “mole of photons” to be absorbed by the panel?arrow_forwardThe intensity of electromagnetic radiation from the sun reaching the earth's upper atmosphere is 1.37kW/m2. Assuming an average wavelength of 680 nm for this radiation, find the number of photons per second that strike a 2.00 m2 solar panel directly facing the sun on an orbiting satellite.arrow_forward
- (a) How many minutes does it take a photon to travel from the Sun to the Earth? min (b) What is the energy in ev of a photon with a wavelength of 478 nm? ev (c) What is the wavelength (in m) of a photon with an energy of 1.03 eV?arrow_forwardThe sun’s surface temperature is about 5800 K.(a) About how much electromagnetic wave energy does a cubic meter of space near thesun’s surface contain?A cubic meter of space near the sun's surface contains ____ J/m3 ofelectromagnetic wave energy.(b) What is the most probable photon energy εp (in eV) for photons emitted by the sun?The most probable energy εp for photons emitted by the sun is ______ eVarrow_forwardThe carbon-dioxide laser is one of the most powerful lasers developed. The energy difference between the two laser levels is 0.117 eV.(a) What is the frequency of the radiation emitted by this laser?(b) In what part of the EM spectrum is such radiation found?arrow_forward
- Light of wavelength 211 nm is shone on gold, which has a work function of 5.31 eV. What is the maximum kinetic energy (in eV) of the electrons emitted from the metal? Assume the light is traveling through a vacuum.arrow_forwardA uniform plasma made up of electrons has a plasma frequency of 2.18 × 107 s-¹. (a) Calculate the electron number density in the plasma. (b) An electromagnetic wave propagates through the plasma with wavenumber k = 102 m ¹. Calculate its phase speed.arrow_forwardThe most energetic electromagnetic waves in the universe are gamma-rays from gamma ray bursts (GRBs) from collapsing massive stars, observed by satellites with expected energies of 100 TeV (1 TeV = 1012eV). (a) What is the frequency of these energetic gamma ray photons? 1 eV = 1.60 x 10-19 J. (b) What is the wavelength?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON