Physics (5th Edition)
5th Edition
ISBN: 9780321976444
Author: James S. Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 30, Problem 17PCE
To determine
The frequency and wavelength of a UV photon.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A photon carries 2.56 eV of energy. What is the photon's
frequency? (h= 6.626 x 10-34 J-s; 1 eV = 1.60 x 10-19 J)
(a)
How many minutes does it take a photon to travel from the Sun to the Earth?
in minutes
(b)
What is the energy in eV of a photon with a wavelength of 533 nm?
in eV
(c)
What is the wavelength (in m) of a photon with an energy of 1.03 eV?
in meters
The energy flux of sunlight reaching the surface of the earth is 1.388 × 103 W/m2. How many photons (nearly) per square metre are incident on the Earth per second? Assume that the photons in the sunlight have an average wavelength of 550 nm.
Chapter 30 Solutions
Physics (5th Edition)
Ch. 30.1 - Prob. 1EYUCh. 30.2 - Prob. 2EYUCh. 30.3 - Prob. 3EYUCh. 30.4 - Prob. 4EYUCh. 30.5 - Prob. 5EYUCh. 30.6 - Prob. 6EYUCh. 30.7 - Prob. 7EYUCh. 30 - Prob. 1CQCh. 30 - Prob. 2CQCh. 30 - Prob. 3CQ
Ch. 30 - Prob. 4CQCh. 30 - Prob. 5CQCh. 30 - Prob. 6CQCh. 30 - Prob. 7CQCh. 30 - Prob. 8CQCh. 30 - Prob. 9CQCh. 30 - Prob. 10CQCh. 30 - Prob. 1PCECh. 30 - Prob. 2PCECh. 30 - Prob. 3PCECh. 30 - The Sun has a surface temperature of about 5800 K....Ch. 30 - Prob. 5PCECh. 30 - Prob. 6PCECh. 30 - (a) By what factor does the peak frequency change...Ch. 30 - Prob. 8PCECh. 30 - Prob. 9PCECh. 30 - Prob. 10PCECh. 30 - Prob. 11PCECh. 30 - Prob. 12PCECh. 30 - Prob. 13PCECh. 30 - Prob. 14PCECh. 30 - Prob. 15PCECh. 30 - Prob. 16PCECh. 30 - Prob. 17PCECh. 30 - Prob. 18PCECh. 30 - Prob. 19PCECh. 30 - Prob. 20PCECh. 30 - Prob. 21PCECh. 30 - Prob. 22PCECh. 30 - Prob. 23PCECh. 30 - Prob. 24PCECh. 30 - Prob. 25PCECh. 30 - Prob. 26PCECh. 30 - Prob. 27PCECh. 30 - Prob. 28PCECh. 30 - Prob. 29PCECh. 30 - Prob. 30PCECh. 30 - Prob. 31PCECh. 30 - Prob. 32PCECh. 30 - Prob. 33PCECh. 30 - Prob. 34PCECh. 30 - Prob. 35PCECh. 30 - BIO Owl Vision Owls have large, sensitive eyes for...Ch. 30 - Prob. 37PCECh. 30 - Prob. 38PCECh. 30 - Prob. 39PCECh. 30 - Prob. 40PCECh. 30 - Prob. 41PCECh. 30 - Prob. 42PCECh. 30 - Prob. 43PCECh. 30 - Prob. 44PCECh. 30 - Prob. 45PCECh. 30 - Prob. 46PCECh. 30 - Prob. 47PCECh. 30 - Prob. 48PCECh. 30 - Prob. 49PCECh. 30 - Prob. 50PCECh. 30 - Prob. 51PCECh. 30 - Prob. 52PCECh. 30 - Prob. 53PCECh. 30 - Prob. 54PCECh. 30 - Prob. 55PCECh. 30 - Prob. 56PCECh. 30 - Prob. 57PCECh. 30 - Prob. 58PCECh. 30 - Prob. 59PCECh. 30 - Prob. 60PCECh. 30 - Prob. 61PCECh. 30 - Prob. 62PCECh. 30 - Prob. 63PCECh. 30 - Prob. 64PCECh. 30 - Prob. 65PCECh. 30 - Prob. 66PCECh. 30 - Prob. 67PCECh. 30 - Prob. 68PCECh. 30 - Prob. 69PCECh. 30 - Prob. 70PCECh. 30 - Prob. 71PCECh. 30 - Prob. 72PCECh. 30 - Prob. 73PCECh. 30 - Prob. 74PCECh. 30 - Prob. 75PCECh. 30 - Prob. 76PCECh. 30 - Prob. 77PCECh. 30 - Prob. 78PCECh. 30 - Prob. 79PCECh. 30 - Prob. 80GPCh. 30 - Prob. 81GPCh. 30 - Prob. 82GPCh. 30 - Prob. 83GPCh. 30 - Prob. 84GPCh. 30 - Prob. 85GPCh. 30 - Prob. 86GPCh. 30 - Prob. 87GPCh. 30 - Prob. 88GPCh. 30 - Prob. 89GPCh. 30 - Prob. 90GPCh. 30 - Prob. 91GPCh. 30 - Prob. 92GPCh. 30 - Prob. 93GPCh. 30 - Prob. 94GPCh. 30 - Prob. 95GPCh. 30 - Prob. 96GPCh. 30 - Prob. 97PPCh. 30 - Prob. 98PPCh. 30 - Prob. 99PPCh. 30 - Prob. 100PPCh. 30 - Prob. 101PPCh. 30 - Prob. 102PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) Calculate the wavelength of light in vacuum that has a frequency of 5.06 x 10 18 nm (b) What is its wavelength in flint glass? nm (c) Calculate the energy of one photon of such light in vacuum. Express the answer in electron volts. eV (d) Does the energy of the photon change when it enters the flint glass? The energy of the photon changes. The energy of the photon does not change. Hz. Explain.arrow_forwardSuppose a hot object radiates with the twice the intensity as the sun on earth, i.e. 2600W/m2. What is the energy density of this radiation?arrow_forwardThe Sun has a temperature of approximately 5800 K. a) What is the peak wavelength of light emitted by the Sun? b) How much energy does one photon of this wavelength have? c) How much power is emitted by the Sun if it has an emissivity of 0.9? (The Sun has a radius of 6.96x10^8 m.) d) How much mass is converted to energy every second in the Sun's core to drive its power emission? Please write your answers in the space below and email your work. For the toolbar, press ALT+F10 (PC) or ALT+FN+F10 (Mac).arrow_forward
- A photon has an energy of 2.44x10^-22 J. What is its frequency?arrow_forwardThe temperature of a student's skin is 33.0°C. At what wavelength does the radiation emitted from the skin reach its peak? umarrow_forwardThe Sun has a temperature of approximately 5800 K. a) What is the peak wavelength of light emitted by the Sun? b) How much energy does one photon of this wavelength have? c) How much power is emitted by the Sun if it has an emissivity of 0.9? (The Sun has a radius of 6.96x10^8 m.) d) How much mass is converted to energy every second in the Sun's core to drive its power emission? Please write your answers in the space below and email your work. ALT+510(BOLO ALTHEN+510 (Mac)arrow_forward
- Answer in typingarrow_forwardThe energy of a photon is given by 6.7 × 10-15 J. What is the energy of the photon in the unit of eV?arrow_forwardAt the surface of the sun, the temperature is approximately 5800 K. A. How much energy is contained in the electromagnetic radiation filling ten cubic meter of space at the sun's surface? B. Make a qualitative sketch of the radiation spectrum at the temperatures of 3000 K and 3800 K as a function of photon energy (eV). Indicate the peak position of these electromagnetic radiations in relation with the solar radiation spectrum.arrow_forward
- A blackbody is a substance that absorbs radiation of all wavelengths and radiates in a continuous spectrum at all wavelengths. It is given the name blackbody because an object that absorbs light at all wavelengths appears black to the human eye. By the end of the 19th century, several properties of blackbody radiation had been established. First, the total intensity I (the average rate of radiation of energy per unit surface area) emitted from a blackbody was shown to be proportional to the fourth power of its temperature: I=oT¹ This is called the Stefan-Boltzmann law for a blackbody. The constant of proportionality o is known as the Stefan-Boltzmann constant and was determined to be o = 5.67 x 10-8 W/(m². K¹). It had also been discovered that the wavelength at which the radiation intensity was maximum varied inversely with temperature. This result, known as the Wien displacement law, is written AmT = 2.90 x 10-³ m. K. where Am is the wavelength with the greatest radiated intensity. ✓…arrow_forwardA housing attached to a microprocessor uses radiator fins to get rid of excess heat. If the largest amount of radiation emitted by the fins has a frequency of 156.05 THz, what is the associated wavelength? marrow_forwardThe maximum intensity of radiation emitted by a star occurs at a surface temperature of 4.3 x 104 K. a) Calculate the wavelength of the emitted radiation when the intensity is maximum. b) Calculate the ratio of the intensity radiated at a wavelength of 60.0 nm to the maximum intensity. Assume that the star radiates like an ideal blackbody.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning