Concept explainers
A two-winding single-phase transformer rated
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
Power System Analysis and Design (MindTap Course List)
- In developing per-unit circuits of systems such as the one shown in Figure 3.10. when moving across a transformer, the voltage base is changed in proportion to the transformer voltage ratings. (a) True (b) Falsearrow_forwardThe ideal transformer windings are eliminated from the per-unit equivalent circuit of a transformer. (a) True (b) Falsearrow_forwardAn ideal transformer has no real or reactive power loss. (a) True (b) Falsearrow_forward
- A single-phase l0-kVA,2300/230-volt,60-Hz two-winding distribution transformer is connected as an autotransformer to step up the voltage from 2300 to 2530 volts (a) Draw a schematic diagram of this arrangement, showing all voltages and currents when delivering full load at rated voltage. (b) Find the permissible kVA rating of the autotransformer if the winding currents and voltages are not to exceed the rated values as a two-winding transformer. How much of this kVA rating is transformed by magnetic induction? (C) The following data are obtained from tests carried out on the transformer when it is connected as a two-winding transformer: Open-circuit test with the low-voltage terminals excited: Applied voltage =230V, input current =0.45A, input power =70W. Short-circuit test with the high-voltage terminals excited: Applied voltage =120, input current =4.5A, input power =240W. Based on the data, compute the efficiency of the autotransformer corresponding to full load, rated voltage, and 0.8 power factor lagging. Comment on why the efficiency is higher as an autotransformer than as a two-winding transformer.arrow_forwardFor an ideal 2-winding transformer, the ampere-turns of the primary winding, N1I1 is equal to the ampere-turns of the secondary winding, N2I2 (a) True (b) Falsearrow_forwardFor developing per-unit equivalent circuits of single-phase three-winding transformer, a common Sbase is selected for all three windings and voltage bases are selected in proportion to the rated voltage of the windings (a) True (b) Falsearrow_forward
- Consider a bank of this single-phase two-winding transformers whose high-voltage terminals are connected to a three-phase, 13.8-kV feeder. The low-voltage terminals are connected to a three-phase substation load rated 2.0 MVA and 2.5 kV. Determine the required voltage, current, and MVA ratings of both windings of each transformer, when the high-voltage/low- voltage windings are connected (a) Y-, (b) -Y, (c) Y-Y, and (d) -.arrow_forwardThree single-phase two-winding transformers, each rated 3kVA,220/110volts,60Hz, with a 0.10 per-unit leakage reactance, are connected as a three-phase extended autotransformer bank, as shown in Figure 3.36(c). The low-voltage winding has a 110 volt rating. (a) Draw the positive-sequence phasor diagram and show that the high-voltage winding has a 479.5 volt rating. (b) A three-phase load connected to the low-voltage terminals absorbs 6 kW at 110 volts and at 0.8 power factor lagging. Draw the per-unit impedance diagram and calculate the voltage and current at the high-voltage terminals. Assume positive-sequence operation.arrow_forwardWhy is it important to reduce the moisture within a transformer to acceptable levels during transformer installation?arrow_forward
- A single-phase two-winding transformer rated 90MVA,80/120kV is to be connected as an autotransformer rated 80/200kV. Assume that the transformer is ideal. (a) Draw a schematic diagram of the ideal transformer connected as an autotransformer. showing the voltages, currents, and dot notation for polarity. (b) Determine the permissible kVA rating of the autotransformer if the winding currents and voltages are not to exceed the rated values as a two-winding transformer. How much of the kA rating is transferred by magnetic induction?arrow_forwardA single-phase, 50-kVA,2400/240-V,60-Hz distribution transformer has the following parameters: Resistance of the 2400-V winding: R1=0.75 Resistance of the 240-V winding: R2=0.0075 Leakage reactance of the 2400-V winding: X1=1.0 Leakage reactance of the 240-V winding: X2=0.01 Exciting admittance on the 240-V side =0.003j0.02S (a) Draw the equivalent circuit referred to the high-voltage side of the transformer. (b) Draw the equivalent circuit referred to the low-voltage side of the transformer. Show the numerical values of impedances on the equivalent circuits.arrow_forwardRework Problem 3.14 if the transformer is delivering rated load at rated secondary voltage and at (a) unity power factor, (b) 0.8 power factor leading. Compare the results with those of Problem 3.14. -arrow_forward
- Power System Analysis and Design (MindTap Course ...Electrical EngineeringISBN:9781305632134Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. SarmaPublisher:Cengage Learning