Degarmo's Materials And Processes In Manufacturing
13th Edition
ISBN: 9781119492825
Author: Black, J. Temple, Kohser, Ronald A., Author.
Publisher: Wiley,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 27, Problem 3P
Estimate the (approximate maximum) horsepower needed to accomplish the operation described in Problem 2 at a cutting speed of 10 m/min. (Hint: First find the HP used per tooth and determine the maximum number of teeth engaged at any time. What are those units?)
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
3. It is required to machine a slot with length 100 mm, width 15 mm, and depth 4 mm. Calculate
the length and pitch of the broach assuming a super-elevation of 0.15 mm/tooth. Calculate the
main power in KW if the specific cutting resistance is 2000 N/mm2 and the cutting speed of 10
m/min is used.
A motorised metal guillotine machine is required to cut 45 mm diameter hole in a plate of 20 mm thickness at rate of 35 holes per minute. It requires a torque of 7 Nm for an area of hole in mm². If the cutting takes 1/10 of a second and the speed of it's flywheel varies from 165 rpm to 145 rpm, calculate
4.1)Energy required to cut a hole
4.2)Energy required for cutting work per second.
4.3)Maximum fluctuation of energy of the flywheel
4.4)Mass of the flywheel having radius of gyrations of 1,5 m
Given that the length of a work-piece made from copper alloy to be face-milled is 250 mm
and the width is 25 mm. The cutter diameter is 150 mm and the tooth number is 10.
1. If it takes 20 seconds to perform the cutting, suggest a cutting speed (in mm/s) and
a feed (in mm/rev) to be used.
2. Give another set of values of cutting speed (in mm/s) and feed (in mm/rev) that can
give the same cutting time as above.
Chapter 27 Solutions
Degarmo's Materials And Processes In Manufacturing
Ch. 27 - Why is sawing one of the most efficient of the...Ch. 27 - Explain why tooth spacing (pitch) is important in...Ch. 27 - What is the tooth gullet used for on a saw blade?Ch. 27 - Explain what is meant by the set of the teeth on a...Ch. 27 - How is tooth set related to saw kerf?Ch. 27 - Why can a bandsaw blade not be hardened throughout...Ch. 27 - What are the advantages of using circular saws?Ch. 27 - Why have bandsawing machines largely replaced...Ch. 27 - Explain how the hole in Figure 27.7 is made on a...Ch. 27 - How would you calculate or estimate Tm for a...
Ch. 27 - What is the disadvantage of using gravity to feed...Ch. 27 - What is unique about the broaching process...Ch. 27 - Can a thick saw blade be used as a broach? Why or...Ch. 27 - Broaching machines are simpler in a basic design...Ch. 27 - Why is broaching particularly well-suited for mass...Ch. 27 - In designing a broach, what would be the first...Ch. 27 - Why is it necessary to relate the design of a...Ch. 27 - What two methods can be utilized to reduce the...Ch. 27 - For a given job, how would a broach having...Ch. 27 - Why are the pitch and radius of the gullet between...Ch. 27 - Why are broaching speeds usually relatively low,...Ch. 27 - What are the advantages of shell-type broach...Ch. 27 - Why are most broaches made from alloy or...Ch. 27 - What are the advantages of TiN-coated broaching...Ch. 27 - For mass-production operations, which process is...Ch. 27 - What is the difference between the roughing teeth...Ch. 27 - The sides of a square, blind hole must be machined...Ch. 27 - The interior, flat surfaces of socket wrenches,...Ch. 27 - Prob. 29RQCh. 27 - What are some ways to improve the efficiency of a...Ch. 27 - To what extent is filing different from sawing?Ch. 27 - Prob. 32RQCh. 27 - Prob. 33RQCh. 27 - Prob. 34RQCh. 27 - A surface 12 in. long is to be machined with a...Ch. 27 - The pitch of the teeth on a simple surface broach...Ch. 27 - Estimate the (approximate maximum) horsepower...Ch. 27 - Estimate the approximate force acting in the...Ch. 27 - In cutting a 6-in.-long slot in a piece of AISI...Ch. 27 - The strength of a pull broach is determined by its...Ch. 27 - Suppose you want to shape a block of metal 7 in....Ch. 27 - Could you have saved any time in Problem 7 by...Ch. 27 - Derive the equation for shaping cutting speed.Ch. 27 - How many strokes per minute would be required to...Ch. 27 - How much time would be required to shape a flat...Ch. 27 - What is the metal removal rate in Problem 11 if...Ch. 27 - Suppose you decide to mill the flat surface...Ch. 27 - A planer has a 10-hp motor, and 75% of the motor...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
An opaque, horizontal plate has a thickness of L=21mm and thermal conductivity k=25W/mK . Water flows adjacent ...
Fundamentals of Heat and Mass Transfer
1.1 What is the difference between an atom and a molecule? A molecule and a crystal?
Manufacturing Engineering & Technology
Determine the angle between the force and the line AB. Prob. F2-26
INTERNATIONAL EDITION---Engineering Mechanics: Statics, 14th edition (SI unit)
Determine the maximum average shear stress in pin A of the truss. A horizontal force of P = 40 kN is applied to...
Mechanics of Materials (10th Edition)
What parts are included in the vehicle chassis?
Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)
The 10-lb block has a speed of 4 ft/s when the force of F = (8t2) lb is applied. Determine the velocity of the ...
Engineering Mechanics: Dynamics (14th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Calculate the machining time to drill four 20 mm diameter holes and one 50 mm diameter central hole in the flange as shown below. Take cutting speed 20 m/min, feed for 20 mm drill 0.2 mm/rev, and for 50 mm drill feed is 0.6 mm/rev, the point angle is 120°? VIVER 20xA 200 D100 SYLON 50arrow_forwardsolvearrow_forwardA motorised metal guillotine machine is required to cut 45 mm diameter hole ina plate of 20 mm thickness at rate of 35 holes per minute. It requires a torqueof 7 Nm for an area of hole in mm?. If the cutting takes 1/10 of a second andthe speed of its flywheel varies from 165 rpm to 145 rpm, calculate:1.Energy required to cut a hole.2.Energy required for cutting work per second.3.Maximum fluctuation of energy of the flywheel.4.Mass of the flywheel having radius of gyration of 1.5 m.arrow_forward
- It is required to reduce the thickness of cast iron workpiece with dimensions (L x w x t) of (230 mm x 120 mm x 25 mm) to 22 mm using shaper machine. Given that average cutting speed is 21 m/min, feed 1.2 mm/double stroke, and return/cutting time ratio is 3/4. The approach at each end is 72 mm. If the permissible depth of cut is 2 mm, determine the cutting time in the following cases: i) Using shaper with a mechanically driven ram. ii) Using shaper with a hydraulically driven ram. Solution: i) Mechanically ( ii) Hydraulicallyarrow_forwardA shaper is operated at 120 cutting strokes per minute and is used to machine a work piece of 250 mm in length and 120 mm wide. Use a feed of 0.6 mm per stroke and a depth of cut of 6 mm. Calculate the total machining time to for machining the component. If the forward stroke is completed in 230°, calculate the percentage of the time when the tool is not contacting the work piece.arrow_forwardMust solve all the questions. Otherwise dont attempt it. If attempted partially, i will surely dislike. So solve all questions.arrow_forward
- A two-spindle drill cuts two holes at the same time, one 1/2 inch and one 3/4 inch. The workpiece is 1.0 inches thick. Both drills have point angles of 118 degrees and the cutting speed for the material is 300 ft/min. The rotational speed of each drill can be set individually but the feed rate for both holes must be set to the same value because they move together into the material. The feed rate is set so that the total metal removal rate of both drills combined does not exceed 1.50 in3/min. Determine (a) maximum feed rate (in/min) that can be used, (b) individual feeds (in/rev) for each hole, and (c) cutting time for the operation.arrow_forwardThe blade on a typical table saw rotates at 3100 revolutions per minute. Calculate the linear velocity in miles per hour of one of the teeth at the edge of the 10 inch diameter blade.arrow_forwardIn turning of stales steel alloy, 1100 mm length and 400 mm diameter, the Feed was 0.35 mm/rev, and depth of cut = 2.5 mm. The tool used in this cutting is cemented carbide tool where Taylor tool life parameters are n = 0.24 and C = 450 (tool life (min) and cutting speed (m/min). Compute the cutting speed that will allow the tool life to be 10% longer than the machining time for this part.arrow_forward
- Nonearrow_forwardFind the machining time required to turn a mild steel rod from 65mm to 58 mm over a length of 100 mm by using a carbide insert. If the approach length and over run length is taken as 5 mm, Cutting speed as 20 m/min and feed is =0.2 mm/rev, and the depth of cut is 0.5mmarrow_forwardA drilling operation is performed to create a through hole on a steel plate that is 20 mm thick. Cutting speed = 0.4 m/s, and feed = 0.20 mm/rev. The 18-mm-diameter twist drill has a point angle of 120°. Determine the following once the drill reaches full diameter: a. the machining time and, b. the metal removal rate Equation used Tm TD₂L fvarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Most Common Metal Machining Processes (Metal Machining Video 1); Author: Sofeast Ltd;https://www.youtube.com/watch?v=uxVJ3qtezGw;License: Standard YouTube License, CC-BY
Machining process and Machine Tools; Author: Amar Gandhi;https://www.youtube.com/watch?v=X2mUJ8baaE0;License: Standard Youtube License