EBK ORGANIC CHEMISTRY STUDY GUIDE AND S
EBK ORGANIC CHEMISTRY STUDY GUIDE AND S
6th Edition
ISBN: 9781319385415
Author: PARISE
Publisher: VST
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 27, Problem 27.27P
Interpretation Introduction

(a)

Interpretation:

The m/z value of M+1 fragment ion from b-type fragmentation of the given peptide is to be stated.

Concept introduction:

In mass spectroscopy, compounds can be identified on the basis of the mass of the compound. When the compound breaks into fragment then they can be distinguished from the other compounds. This technique is also used to differentiate the isotopes of compounds. In amino acids, three types of fragments are observed in low energy collisions are a, b and y ions. It is known as tandem mass spectrometry.

Expert Solution
Check Mark

Answer to Problem 27.27P

The m/z value of M+1 fragment ion from b-type fragmentation of the given peptide is shown below.

HNm/z=115HNF     m/z=262.1HNFE     m/z=391.2HNFES      m/z=478.2HNFESG   m/z=535.2HNFESGKOHm/z=680.3

Where N is asparagine, F is phenylalanine, E is glutamic acid, S is serine, G is glycine, K is lysine amino acid.

Explanation of Solution

In amino acids, b-type fragments appear due to an amino group or in other words charge is being carried by N-terminal. That is why it is also known as the N-terminus amino acid fragment. The b-type fragment is shown below.

EBK ORGANIC CHEMISTRY STUDY GUIDE AND S, Chapter 27, Problem 27.27P , additional homework tip  1

Figure 1

The given peptide is NFESGK where N is asparagine with m/z=114, F is phenylalanine with m/z=147.1, E is glutamic acid with m/z=129, S is serine with m/z=87, G is glycine with m/z=57 and K is lysine with m/z=128.1. The formation of the peptide with M+1 fragment ion by subsequent addition of their residues in b-type fragment manner. The m/z value of M+1 fragment ion from b-type fragmentation of the given peptide is shown below.

HNm/z=115HNF     m/z=262.1HNFE     m/z=391.2HNFES      m/z=478.2HNFESG   m/z=535.2HNFESGKOHm/z=680.3

Conclusion

The m/z value of M+1 fragment ion from b-type fragmentation of the given peptide is shown above.

Interpretation Introduction

(b)

Interpretation:

The m/z value of M+1 fragment ion from y-type fragmentation of the peptide in part (a) containing protonated H3N+ ion is to be stated.

Concept introduction:

In mass spectroscopy, compounds can be identified on the basis of the mass of the compound. When the compound breaks into fragment then they can be distinguished from the other compounds. This technique is also used to differentiate the isotopes of compounds. In amino acids, three types of fragments are observed in low energy collisions are a, b and y ions. It is known as tandem mass spectrometry.

Expert Solution
Check Mark

Answer to Problem 27.27P

The m/z value of M+1 fragment ion from y-type fragmentation of the peptide in part (a) containing protonated H3N+ ion is shown below.

H2KOH            m/z=147.1H2GKOH             m/z=204.1H2SGKOH         m/z=291.2H2ESGKOH      m/z=420.2H2FESGKOH   m/z=567.28H2NFESGKOHm/z=681.3

Where N is asparagine, F is phenylalanine, E is glutamic acid, S is serine, G is glycine, K is lysine amino acid.

Explanation of Solution

In amino acids, y-type fragments appear due to a carboxyl group or in other words charge is being carried by C-terminal. That is why it is also known as the C-terminus amino acid fragment. The y-type fragment is shown below.

EBK ORGANIC CHEMISTRY STUDY GUIDE AND S, Chapter 27, Problem 27.27P , additional homework tip  2

Figure 2

The given peptide is NFESGK where N is asparagine with m/z=114, F is phenylalanine with m/z=147.1, E is glutamic acid with m/z=129, S is serine with m/z=87, G is glycine with m/z=57 and K is lysine with m/z=128.1. The formation of the peptide with M+1 fragment ion by subsequent addition of their residues in y-type fragment manner. The m/z value of M+1 fragment ion from y-type fragmentation of the peptide in part (a) containing protonated H3N+ ion is shown below.

H2KOH            m/z=147.1H2GKOH             m/z=204.1H2SGKOH         m/z=291.2H2ESGKOH      m/z=420.2H2FESGKOH   m/z=567.28H2NFESGKOHm/z=681.3

Conclusion

The m/z value of M+1 fragment ion from y-type fragmentation of the peptide in part (a) containing protonated H3N+ ion is shown above.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Para-aminobenzoic acid has two ionizable groups. One is a carboxylic acid that ionizes through loss of a proton thereby forming a charged para-aminobenzoic acid carboxylate anion, and the other is an amine connected to an aromatic (benzene) ring that ionizes by accepting an H+ to form a positively charged ammonium ion. The pk of the carboxylic acid is 4.9 and the pk of the amino group is 2.5. Assume that the intracellular pH within a bacterial cell is 7.0. N- H O-H H + H-N- H pK₂ = 2.5 Which of the following structures correctly depicts how most of the para-aminobenzoic acid is ionized at pH 7? A. B. O-H C. H H + H-N- H H D. H N- O-H H pK₂ = 4.9
Identify the following amino acid at pH = 7 (aqueous form): (COO-)–CH(NH3+)–CH2–(COO-) aspartic acid asparagine histidine arginine lysine  Describe the amino acid illustrated above (at pH = 7.0). it is a non-polar, positively-charged amino acid it is a polar, positively-charged amino acid it is a polar, uncharged amino acid it is a polar, negatively-charged amino acid it is a non-polar, negatively-charged amino acid How many chiral carbons are present in the above amino acid (in aqueous form)? zero chiral carbons one chiral carbon two chiral carbons three chiral carbons four chiral carbons How many optical isomers (stereoisomers) are possible for the above amino acid (aqueous form)? 21 = 2 optical isomers 22 = 4 optical isomers 23 = 8 optical isomers 24 = 16 optical isomers 25 = 32 optical isomers
Determine the buffer capacity of Alanine and Histidine at pH 2.0 and 6.0 respectively and discuss the results.

Chapter 27 Solutions

EBK ORGANIC CHEMISTRY STUDY GUIDE AND S

Ch. 27 - Prob. 27.12PCh. 27 - Prob. 27.13PCh. 27 - Prob. 27.14PCh. 27 - Prob. 27.15PCh. 27 - Prob. 27.16PCh. 27 - Prob. 27.17PCh. 27 - Prob. 27.18PCh. 27 - Prob. 27.19PCh. 27 - Prob. 27.20PCh. 27 - Prob. 27.21PCh. 27 - Prob. 27.22PCh. 27 - Prob. 27.23PCh. 27 - Prob. 27.24PCh. 27 - Prob. 27.25PCh. 27 - Prob. 27.26PCh. 27 - Prob. 27.27PCh. 27 - Prob. 27.28PCh. 27 - Prob. 27.29PCh. 27 - Prob. 27.30PCh. 27 - Prob. 27.31PCh. 27 - Prob. 27.32PCh. 27 - Prob. 27.33PCh. 27 - Prob. 27.34PCh. 27 - Prob. 27.35PCh. 27 - Prob. 27.36PCh. 27 - Prob. 27.37PCh. 27 - Prob. 27.38PCh. 27 - Prob. 27.39PCh. 27 - Prob. 27.40PCh. 27 - Prob. 27.41PCh. 27 - Prob. 27.42PCh. 27 - Prob. 27.43APCh. 27 - Prob. 27.44APCh. 27 - Prob. 27.45APCh. 27 - Prob. 27.46APCh. 27 - Prob. 27.47APCh. 27 - Prob. 27.48APCh. 27 - Prob. 27.49APCh. 27 - Prob. 27.50APCh. 27 - Prob. 27.51APCh. 27 - Prob. 27.52APCh. 27 - Prob. 27.53APCh. 27 - Prob. 27.54APCh. 27 - Prob. 27.55APCh. 27 - Prob. 27.56APCh. 27 - Prob. 27.57APCh. 27 - Prob. 27.58APCh. 27 - Prob. 27.59APCh. 27 - Prob. 27.60APCh. 27 - Prob. 27.61APCh. 27 - Prob. 27.62APCh. 27 - Prob. 27.63APCh. 27 - Prob. 27.64APCh. 27 - Prob. 27.65APCh. 27 - Prob. 27.66APCh. 27 - Prob. 27.67APCh. 27 - Prob. 27.68APCh. 27 - Prob. 27.69APCh. 27 - Prob. 27.70APCh. 27 - Prob. 27.71APCh. 27 - Prob. 27.72APCh. 27 - Prob. 27.73APCh. 27 - Prob. 27.74APCh. 27 - Prob. 27.75APCh. 27 - Prob. 27.76APCh. 27 - Prob. 27.77APCh. 27 - Prob. 27.78APCh. 27 - Prob. 27.79APCh. 27 - Prob. 27.80APCh. 27 - Prob. 27.81APCh. 27 - Prob. 27.82APCh. 27 - Prob. 27.83AP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning
Nucleic acids - DNA and RNA structure; Author: MEDSimplified;https://www.youtube.com/watch?v=0lZRAShqft0;License: Standard YouTube License, CC-BY