DeGarmo's Materials and Processes in Manufacturing
12th Edition
ISBN: 9781118987674
Author: J. T. Black, Ronald A. Kohser
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 21, Problem 3P
If the cutting forces is 1000 lb calculate the horsepower that a process operating at a speed of 80 fpm is going to use.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A motorised metal guillotine machine is required to cut 45 mm diameter hole in a plate of 20 mm thickness at rate of 35 holes per minute. It requires a torque of 7 Nm for an area of hole in mm2. If the cutting takes 1/10 of a second and the speed of its flywheel varies from 165 rpm to 145 rpm, calculate:
Calculate the r/min required for finish turning a 2in diameter piece of machine steel (The cutting speed of the machine steel is 100).
In a lathe machine, The diameter of the driver and driven pulley are 2745 mm and 1200 mm respectively, And the driver pulley runs at speed of 225 rpm. Find the speed at which is driven pulley runs in the machine.
the speed of the driven pulley in rpm is
Chapter 21 Solutions
DeGarmo's Materials and Processes in Manufacturing
Ch. 21 - Why has the metal-cutting process resisted...Ch. 21 - What variables must be considered in understanding...Ch. 21 - Which of the seven basic chip formation processes...Ch. 21 - How is feed related to speed in the machining...Ch. 21 - Before you select speed and feed for a machining...Ch. 21 - Milling has two feeds. What are they, and which...Ch. 21 - What is the fundamental mechanism of chip...Ch. 21 - What is the difference between oblique machining...Ch. 21 - What are the implications of Figure 21.13, given...Ch. 21 - Note that the units for the approximate equation...
Ch. 21 - For orthogonal machining, the cutting edge radius...Ch. 21 - How do the magnitude of the strain and strain rate...Ch. 21 - Why is titanium such a difficult metal to machine?...Ch. 21 - Explain why you get segmented or discontinuous...Ch. 21 - Why is metal cutting shear stress such an...Ch. 21 - Which of the three cutting forces in oblique...Ch. 21 - How is the energy in a machining process typically...Ch. 21 - Where does the energy consumed in metal cutting...Ch. 21 - What are two ways of estimating the primary...Ch. 21 - What are the three different ways to perform...Ch. 21 - Why does the cutting force Fc increase with...Ch. 21 - Why doesnt the cutting force Fc increase with...Ch. 21 - Prob. 23RQCh. 21 - How does the selection of the machining parameters...Ch. 21 - Suppose you had a machining operation (boring)...Ch. 21 - Make a sketch like that shown in Figure 21.1 with...Ch. 21 - Show how you would do near orthogonal machining in...Ch. 21 - Can you do orthogonal machining on a shaper or...Ch. 21 - What process and material combination would yield...Ch. 21 - What is meant by the statement that machining...Ch. 21 - Prob. 31RQCh. 21 - Figure 21.4 provides suggested cutting speeds and...Ch. 21 - For problem 1, suppose you selected a speed of 145...Ch. 21 - If the cutting forces is 1000 lb calculate the...Ch. 21 - Explain how you would estimate the cutting force...Ch. 21 - For a turning operation, you have selected a...Ch. 21 - For a slab milling operation using a...Ch. 21 - The power required to machine metal is related to...Ch. 21 - In order to drill a hole in the material described...Ch. 21 - Suppose you have the data in Table 21.A obtained...Ch. 21 - Calculate the horsepower that a process is going...Ch. 21 - Explain how you would estimate the cutting force...Ch. 21 - Derive equations for F and N using the circular...Ch. 21 - Prob. 14PCh. 21 - Prob. 15PCh. 21 - A manufacturing engineer needs an estimate of the...Ch. 21 - Using Figure 21.4 for input data, determine the...Ch. 21 - Estimate the horsepower needed to remove metal at...Ch. 21 - For a turning process, the horsepower required was...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
Determine the force in members GF, CD, and GC, and state if the members are in tension or compression. Probs. 6...
INTERNATIONAL EDITION---Engineering Mechanics: Statics, 14th edition (SI unit)
ICA 8-31
If a force of 15 newtons [N] is applied to a surface and the pressure is measured as 4,000 pascals [Pa...
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
Convert a distance of 2580 feet to meters.
Applied Fluid Mechanics (7th Edition)
The W10 15 cantilevered beam is made of A-36 steel and is subjected to the loading shown. Determine the slope ...
Mechanics of Materials
Consider the flow system shown in Problem 8.94. Assume the minimum NPSHR at the pump inlet is 15 ft of water. S...
Fox and McDonald's Introduction to Fluid Mechanics
Consider a Rankine cycle with saturated steam leaving the boiler at a pressure of 2 MPa and a condenser pressur...
Fundamentals of Heat and Mass Transfer
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- For the operation of straight turning in a lathe machine, the diameter of the workpiece is 80 mm, the length is 0.12 m, the cutting speed is 80 m / min, the feed is 0.5 mm / rev and the depth of cut is 0.002 m . Find the material removing rate and the time of machining.arrow_forwardThe workpiece of size 50 mm x 90 mm length is to be reduced to 0 42 mm x 85 mm. If the depth of cut is 0.5 mm, feed is 0.25 mm/rev and cutting speed is 45 m/min find the time taken to complete one job and production rate at the end of 8 hr shift.arrow_forwardFor a turning operation, the cutting speed is 2.5 m/sec, and the depth of cut is 3 mm. A thrustforce of 300 N and cutting force of 400 N are measured. The tool rake angle is 10o and thecutting ratio r is 0.5. If Merchant theory applies, use the graphical method. Find the coefficientof friction between the chip and the tool. Also, the power consumed machining the material.arrow_forward
- A shaper is operated at 120 cutting strokes per minute and is used to machine a work piece of 250 mm in length and 120 mm wide. Use a feed of 0.6 mm per stroke and a depth of cut of 6 mm. Calculate the total machining time to for machining the component. If the forward stroke is completed in 230°, calculate the percentage of the time when the tool is not contacting the work piece.arrow_forwardA cylindrical rod is machined using turning processes. It is given that the cutting speed is 120min ¹, and feed per tooth is 0.0025 m/min. The outer diameter is 35mm, the length of the rod is 130m and the inner diameter is 22mm. The number of teeth is 6. Find Rotational speed, Feed rate, Machining time, and Depth of cut.arrow_forwardFind the machining time, in seconds, and the rate of material removing in mmA3;sec for a turning operation having the following information: 1- Wp diameter is 80mm, 2- the length is 0.12m, 3- the cutting speed is 80m/min, 4- feed i50.5 mm/rev and 5- the depth of cut is 0.002m.arrow_forward
- ASAParrow_forwardA two-spindle drill cuts two holes at the same time, one 1/2 inch and one 3/4 inch. The workpiece is 1.0 inches thick. Both drills have point angles of 118 degrees and the cutting speed for the material is 300 ft/min. The rotational speed of each drill can be set individually but the feed rate for both holes must be set to the same value because they move together into the material. The feed rate is set so that the total metal removal rate of both drills combined does not exceed 1.50 in3/min. Determine (a) maximum feed rate (in/min) that can be used, (b) individual feeds (in/rev) for each hole, and (c) cutting time for the operation.arrow_forwardi need the answer quicklyarrow_forward
- 3. Using a lathe machine having a motor power of 4 KW and mechanical efficiency of 0.85, calculate the maximum feed for turning 85 mm diameter to 80 mm, the specific cutting energy of the material is 1800 N/mm2, the spindle rotates at 250 rpm. Page 1 of 1arrow_forward3. It is required to machine a slot with length 100 mm, width 15 mm, and depth 4 mm. Calculate the length and pitch of the broach assuming a super-elevation of 0.15 mm/tooth. Calculate the main power in KW if the specific cutting resistance is 2000 N/mm2 and the cutting speed of 10 m/min is used.arrow_forwardA steel shaft of 75 mm diameter and 250 mm long turned on a lathe. Speed of spindle = 2 m/s, feed = 0.25 mm/rev. Find time required for 50 jobs by assuming 2 minutes for handling of each job.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Most Common Metal Machining Processes (Metal Machining Video 1); Author: Sofeast Ltd;https://www.youtube.com/watch?v=uxVJ3qtezGw;License: Standard YouTube License, CC-BY
Machining process and Machine Tools; Author: Amar Gandhi;https://www.youtube.com/watch?v=X2mUJ8baaE0;License: Standard Youtube License