DeGarmo's Materials and Processes in Manufacturing
12th Edition
ISBN: 9781118987674
Author: J. T. Black, Ronald A. Kohser
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 21, Problem 10RQ
Note that the units for the approximate equation for MRR for turning are not correct. When is the approximate equation not very good (yields a large error in MRR values)?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An Aluminium workpiece of 175 mm length is machined in a lathe, where the plain tuming openatnin done with th spend
steel single point cutting tool. The diameter of the workpece got reduced by 5 mm durng thin operation As per the wng
the required machining lengthis 103 mm and the final diameter is 16 mm, The lathe was set to operate at a spede speed u
2550 rpm and the camage was set to move with an aal speed of 415 mm/min auaomatically. he aut pownt is timated to &
Ws/ mm
Calculate:
(a). Cutting speed
(b). Depth of cut
(d. Material Removal Rate
(d). Cutting time
(e). Net power required
A cemented carbide tool is used to turn a part with length = 18.0 in and diameter = 3.0 in. The parameters in the Taylor equation are: n = 0.27 and C = 1200. The rate for the operator and machine tool = $33.00/hr, and the tooling cost per cutting edge = $2.00. It takes 3.0 min to load and unload the workpart and 1.50 min to change tools. The feed = 0.013 in/rev. Determine:
Cutting speed for maximum production rate,
Tool life in min of cutting, and
Cycle time and cost per unit of product.
In a production turning operation, the workpart is 60 mm in diameter and 500 mm long. A feed of 0.75 mm/rev is used in the operation. If cutting speed=9 m/s, the tool must be changed every 4 workparts; But if cutting speed=5 m/s, the tool can be used to produce 50 pieces between tool changes. Determine the Taylor tool life equation for this job. (use the equations given below for solution)
Chapter 21 Solutions
DeGarmo's Materials and Processes in Manufacturing
Ch. 21 - Why has the metal-cutting process resisted...Ch. 21 - What variables must be considered in understanding...Ch. 21 - Which of the seven basic chip formation processes...Ch. 21 - How is feed related to speed in the machining...Ch. 21 - Before you select speed and feed for a machining...Ch. 21 - Milling has two feeds. What are they, and which...Ch. 21 - What is the fundamental mechanism of chip...Ch. 21 - What is the difference between oblique machining...Ch. 21 - What are the implications of Figure 21.13, given...Ch. 21 - Note that the units for the approximate equation...
Ch. 21 - For orthogonal machining, the cutting edge radius...Ch. 21 - How do the magnitude of the strain and strain rate...Ch. 21 - Why is titanium such a difficult metal to machine?...Ch. 21 - Explain why you get segmented or discontinuous...Ch. 21 - Why is metal cutting shear stress such an...Ch. 21 - Which of the three cutting forces in oblique...Ch. 21 - How is the energy in a machining process typically...Ch. 21 - Where does the energy consumed in metal cutting...Ch. 21 - What are two ways of estimating the primary...Ch. 21 - What are the three different ways to perform...Ch. 21 - Why does the cutting force Fc increase with...Ch. 21 - Why doesnt the cutting force Fc increase with...Ch. 21 - Prob. 23RQCh. 21 - How does the selection of the machining parameters...Ch. 21 - Suppose you had a machining operation (boring)...Ch. 21 - Make a sketch like that shown in Figure 21.1 with...Ch. 21 - Show how you would do near orthogonal machining in...Ch. 21 - Can you do orthogonal machining on a shaper or...Ch. 21 - What process and material combination would yield...Ch. 21 - What is meant by the statement that machining...Ch. 21 - Prob. 31RQCh. 21 - Figure 21.4 provides suggested cutting speeds and...Ch. 21 - For problem 1, suppose you selected a speed of 145...Ch. 21 - If the cutting forces is 1000 lb calculate the...Ch. 21 - Explain how you would estimate the cutting force...Ch. 21 - For a turning operation, you have selected a...Ch. 21 - For a slab milling operation using a...Ch. 21 - The power required to machine metal is related to...Ch. 21 - In order to drill a hole in the material described...Ch. 21 - Suppose you have the data in Table 21.A obtained...Ch. 21 - Calculate the horsepower that a process is going...Ch. 21 - Explain how you would estimate the cutting force...Ch. 21 - Derive equations for F and N using the circular...Ch. 21 - Prob. 14PCh. 21 - Prob. 15PCh. 21 - A manufacturing engineer needs an estimate of the...Ch. 21 - Using Figure 21.4 for input data, determine the...Ch. 21 - Estimate the horsepower needed to remove metal at...Ch. 21 - For a turning process, the horsepower required was...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
A space is at a temperature of 75 F (24 C), and the relative humidity is 45 percent. Find (a) the partial press...
Heating Ventilating and Air Conditioning: Analysis and Design
Determine the reactions at the supports A and B, then draw the shear and moment diagram. El is constant. Neglec...
Mechanics of Materials (10th Edition)
1.1 What is the difference between an atom and a molecule? A molecule and a crystal?
Manufacturing Engineering & Technology
A piston/cylinder with a cross-sectional area of 0.01m2 has a piston mass of 65kg plus a force of 800N resting ...
Fundamentals Of Thermodynamics
In some western states, water for mining and irrigation was sold by the “miner’s inch,” the rate at which water...
Fox and McDonald's Introduction to Fluid Mechanics
Determine the shear and moment as a function of x, and then draw the shear and moment diagrams. Prob. F7-7
Engineering Mechanics: Statics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- I need correct answer please Write a CNC program to perform threading operation on CNC lathe machine on a mild steel sample of 2 cm diameter. Write the program in absolute mode and assume if any other necessary information isarrow_forwardPlease do Asaparrow_forwardCalculate spindle RPM and machining time for cutting a 1.5" diameter 4" long at 225 SFPM using a feed rate of 0.004".arrow_forward
- thickness is HW3.A block of steel has a length L-600mm and a width W-450mm. The Machined 10mm, once by Peripheral Milling and once by planing Machine.Calculate :Machining time for each operation if you know the following For peripheral milling: cutting speed V =80 m/min, Feed f-0.15mm/rev, the cutter .1 diameter D =50 mm with five teeth and depth of cut d =3mm For planing: clearance on both sides c =25mm, cutting speed V =36.56 m/min, retum to .2 cutting ratio m =0.25, feed f=5 mm/stroke and depth of cut d =5 mm .Calculate Material removal rate in both processes .3 Solutionarrow_forwardIn a production turning operation, the workpart is 60 mm in diameter and 500 mm long. A feed of 0.75 mm/rev is used in the operation. If cutting speed-9 m/s, the tool must be changed every 4 workparts; But if cutting speed=5 m/s, the tool can be used to produce 50 pieces between tool changes. Determine the Taylor tool life equation for this job. (use the equations given below for solution) L Tm- 1,= Nf N AD, vT" = C %3| AD,L Tm fvarrow_forwardA HSS tool is used to turn a steel workpart that is 300 mm long and 80 mm in diameter. The parameters in the Taylor equation are: n=0.13 and C= 75 (m/min) for a feed of 0.4 mm/rev. The operator and machine tool rate = $30.00/hr, and the tooling cost per cutting edge = $4.00. It takes 2.0 min to load and unload the workpart and 3.50 min to change tools. Determine: a. Tutting speed for maximum production rate, b. Tool life in min of cutting, and c. Cycle time and cost per unit of product.arrow_forward
- A HSS tool is used to turn a steel workpart that is 300 mm long and 80 mm in diameter. The parameters in the Taylor equation are: n = 0.13 and C = 75 (m/min) for a feed of 0.4 mm/rev. The operator and machine tool rate = $30.00/hr, and the tooling cost per cutting edge = $4.00. It takes 2.0 min to load and unload the workpart and 3.50 min to change tools. Determine: Tutting speed for maximum production rate, Tool life in min of cutting, and Cycle time and cost per unit of product. determine cutting speed for minimum cost.arrow_forwardFor the operation of straight turning in a lathe machine, the diameter of the workpiece is 80 mm, the length is 0.12 m, the cutting speed is 80 m / min, the feed is 0.5 mm / rev and the depth of cut is 0.002 m . Find the material removing rate and the time of machining.arrow_forwardIn a production turning operation, the workpart is 60 mm in diameter and 500 mm long. A feed of 0.75 mm/rev is used in the operation. If cutting speed=9 m/s, the tool must be changed every 4 workparts; But if cutting speed=5 m/s, the tool can be used to produce 50 pieces between tool changes. Determine the Taylor tool life equation for this job. (use the equations given below for solution)arrow_forward
- When turning the relative speed of the work piece rotation and feed rates of the cutting tool coupled to the material to be cut must be calculated. The turning machine is designed to run at 8 different speeds via a serious of gears. The speed must be correct to ensure tool longevity, material finish and minimum time of manufacture. The cutting speed is given by the following equation Where: N = spindle speed (rpm) CS = Cutting Speed of Metal (m/min) d= Diameter of Workpiece (mm) Different metals have different CS recommendations. For this question you are considering brass which has a recommended CS of 60. The pieces to be machined range in size from 20mm to 55mm. You have been asked to determine the 8 spindle speeds given a CS value for brass for the different diameters. These speeds are to be arranged in arithmetic progression 2. geometric progressionarrow_forwardAn end milling operation is carried out along a straight line path that is 325 mm long. The cut is in a direction parallel to the x‑axis on a CNC machining center. Cutting speed = 30 m/min, and chip load = 0.06 mm. The end milling cutter has two teeth and its diameter = 16.0 mm. The x‑axis uses a DC servomotor connected directly to a leadscrew whose pitch = 6.0 mm. The optical encoder emits 400 pulses per revolution of the screw. Determine (a) feed rate during the cut, (b) rotational speed of the motor, and (c) pulse rate of the encoder at the feed rate indicated.arrow_forwardExplain the difference between concentric turning and eccentric turning.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Precision Machining Technology (MindTap Course Li...Mechanical EngineeringISBN:9781285444543Author:Peter J. Hoffman, Eric S. Hopewell, Brian JanesPublisher:Cengage Learning
Precision Machining Technology (MindTap Course Li...
Mechanical Engineering
ISBN:9781285444543
Author:Peter J. Hoffman, Eric S. Hopewell, Brian Janes
Publisher:Cengage Learning
Types of Manufacturing Process | Manufacturing Processes; Author: Magic Marks;https://www.youtube.com/watch?v=koULXptaBTs;License: Standard Youtube License