Physical Chemistry
2nd Edition
ISBN: 9781133958437
Author: Ball, David W. (david Warren), BAER, Tomas
Publisher: Wadsworth Cengage Learning,
expand_more
expand_more
format_list_bulleted
Question
Chapter 20, Problem 20.12E
Interpretation Introduction
Interpretation:
The concentration of
Concept introduction:
The rate law of the reaction is expressed as,
Where,
•
•
The sum of the stoichiometric coefficient of reactant
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
5. A solution of sucrose is fermented in a vessel until the evolution of CO2 ceases. Then, the
product solution is analyzed and found to contain, 45% ethanol; 5% acetic acid; and 15%
glycerin by weight.
If the original charge is 500 kg, evaluate;
e. The ratio of sucrose to water in the original charge (wt/wt).
f. Moles of CO2 evolved.
g. Maximum possible amount of ethanol that could be formed.
h. Conversion efficiency.
i. Per cent excess of excess reactant.
Reactions:
Inversion reaction: C12H22O11 + H2O →2C6H12O6
Fermentation reaction: C6H12O6 →→2C2H5OH + 2CO2
Formation of acetic acid and glycerin: C6H12O6 + C2H5OH + H₂O→ CH3COOH + 2C3H8O3
Show work. don't give Ai generated solution. How many carbons and hydrogens are in the structure?
13. (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the
molecule depicted below.
Bond B
2°C. +2°C. cleavage
Bond A
•CH3 + 26.← Cleavage
2°C. +
Bond C
+3°C•
CH3 2C
Cleavage
E
2°C. 26.
weakest bond
Intact molecule
Strongest 3°C 20.
Gund
Largest
argest
a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in
appropriate boxes.
C
Weakest
bond
A
Produces
Most
Bond
Strongest
Bond
Strongest Gund
produces least stable
radicals
Weakest
Stable radical
b. (4pts) Consider the relative stability of all cleavage products that form when bonds A,
B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B,
and C are all carbon radicals.
i. Which ONE cleavage product is the most stable? A condensed or bond line
representation is fine.
13°C. formed in
bound C
cleavage
ii. Which ONE cleavage product is the least stable? A condensed or bond line
representation is fine.
• CH3
methyl radical
Formed in Gund A Cleavage
c.…
Chapter 20 Solutions
Physical Chemistry
Ch. 20 - Prob. 20.1ECh. 20 - The oxidation-reduction reaction between iron...Ch. 20 - The oxidation-reduction reaction between iron...Ch. 20 - The rate of the reaction...Ch. 20 - For a certain reaction between NO and O2, the rate...Ch. 20 - For a reaction between SO2 and Cl2, the rate law...Ch. 20 - Consider the chemical reaction A+B+Cproducts...Ch. 20 - For the chemical reaction...Ch. 20 - Explain how a species might be part of a rate law...Ch. 20 - Refer to Example 20.2 and explain whether any...
Ch. 20 - Rate law experiments dont always give data in the...Ch. 20 - Prob. 20.12ECh. 20 - What must the units on k be for the following rate...Ch. 20 - What must the units on k be for the following rate...Ch. 20 - The reaction 2O33O2 has first-order kinetics and a...Ch. 20 - Digestive processes are first-order processes. The...Ch. 20 - Prob. 20.18ECh. 20 - Derive equation 20.15.Ch. 20 - Prob. 20.20ECh. 20 - To a very good approximation, the cooling of a hot...Ch. 20 - Assume that thermal decomposition of mercuric...Ch. 20 - Prob. 20.23ECh. 20 - Prob. 20.24ECh. 20 - Derive equation 20.22.Ch. 20 - a Write a rate law and an integrated rate law for...Ch. 20 - Derive an expression for the half-life of a a...Ch. 20 - Prob. 20.28ECh. 20 - Rewrite equation 20.27 so that it has the form of...Ch. 20 - One can also define a third-life, t1/3, which is...Ch. 20 - The decomposition of NH3: 2NH3N2+3H2 is a...Ch. 20 - Prob. 20.32ECh. 20 - Prob. 20.33ECh. 20 - When ionic compounds crystallize from a...Ch. 20 - An aqueous reaction that uses the solvent H2O as a...Ch. 20 - The rate law for the reaction...Ch. 20 - If a reaction has the same rate constant, what...Ch. 20 - List at least four experimentally determined...Ch. 20 - Prob. 20.39ECh. 20 - Prob. 20.40ECh. 20 - Prob. 20.41ECh. 20 - Prob. 20.42ECh. 20 - What is the value of the equilibrium constant of a...Ch. 20 - Prob. 20.44ECh. 20 - Prob. 20.45ECh. 20 - Show how equation 20.33 reduces to a simpler form...Ch. 20 - Write expressions like equation 20.37 for a set of...Ch. 20 - Prob. 20.48ECh. 20 - Prob. 20.49ECh. 20 - Prob. 20.50ECh. 20 - Prob. 20.51ECh. 20 - Prob. 20.52ECh. 20 - Prob. 20.53ECh. 20 - Prob. 20.54ECh. 20 - For what values of time, t, will 210Bi and 206Pb...Ch. 20 - Prob. 20.56ECh. 20 - An interesting pair of consecutive reactions...Ch. 20 - Find limiting forms of equation 20.47 for a k1>>k2...Ch. 20 - Prob. 20.59ECh. 20 - Prob. 20.60ECh. 20 - Prob. 20.61ECh. 20 - Prob. 20.62ECh. 20 - At room temperature (22C), the rate constant for...Ch. 20 - Recently, researchers studying the kinetics of...Ch. 20 - A reaction has k=1.771061/(Ms) at 25.0C and an...Ch. 20 - Prob. 20.66ECh. 20 - Prob. 20.67ECh. 20 - Prob. 20.68ECh. 20 - Nitric oxide, NO, is known to break down ozone,...Ch. 20 - a Suggest a mechanism for the bromination of...Ch. 20 - Prob. 20.71ECh. 20 - Prob. 20.72ECh. 20 - Determine a rate law for the chlorination of...Ch. 20 - Determine a rate law for the chlorination of...Ch. 20 - A proposed mechanism for the gas-phase...Ch. 20 - Prob. 20.76ECh. 20 - The nitration of methanol, CH3OH, by nitrous acid...Ch. 20 - Prob. 20.78ECh. 20 - Many gas-phase reactions require some inert body,...Ch. 20 - Prob. 20.80ECh. 20 - Carbonic anhydrase, an enzyme whose substrate is...Ch. 20 - Show that another form of the Michaelis-Menten...Ch. 20 - Prob. 20.83ECh. 20 - Prob. 20.84ECh. 20 - Prob. 20.85ECh. 20 - Prob. 20.86ECh. 20 - Pyrolysis involves heating compounds to break them...Ch. 20 - Prob. 20.88ECh. 20 - Label the elementary processes for the reaction...Ch. 20 - Prob. 20.90ECh. 20 - What are the rate laws of mechanisms 1 and 2 for...Ch. 20 - Estimate G for an elementary process whose rate...Ch. 20 - Prob. 20.93ECh. 20 - Prob. 20.94ECh. 20 - Prob. 20.95ECh. 20 - For the following two reactions H+Cl2HCl+Cl...Ch. 20 - Prob. 20.97ECh. 20 - Prob. 20.98ECh. 20 - Prob. 20.99ECh. 20 - Consider a reaction that has two parallel pathways...Ch. 20 - Consider a set of first-order consecutive...Ch. 20 - Prob. 20.102E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Hi!! Please provide a solution that is handwritten. Ensure all figures, reaction mechanisms (with arrows and lone pairs please!!), and structures are clearly drawn to illustrate the synthesis of the product as per the standards of a third year organic chemistry course. ****the solution must include all steps, mechanisms, and intermediate structures as required. Please hand-draw the mechanisms and structures to support your explanation. Don’t give me AI-generated diagrams or text-based explanations, no wordy explanations on how to draw the structures I need help with the exact mechanism hand drawn by you!!! I am reposting this—ensure all parts of the question are straightforward and clear or please let another expert handle it thanks!!arrow_forwardHi!! Please provide a solution that is handwritten. Ensure all figures, reaction mechanisms (with arrows and lone pairs please!!), and structures are clearly drawn to illustrate the synthesis of the product as per the standards of a third year organic chemistry course. ****the solution must include all steps, mechanisms, and intermediate structures as required. Please hand-draw the mechanisms and structures to support your explanation. Don’t give me AI-generated diagrams or text-based explanations, no wordy explanations on how to draw the structures I need help with the exact mechanism hand drawn by you!!! I am reposting this—ensure all parts of the question are straightforward and clear or please let another expert handle it thanks!!arrow_forward. (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B 2°C. +2°C. < cleavage Bond A • CH3 + 26. t cleavage 2°C• +3°C• Bond C Cleavage CH3 ZC '2°C. 26. E Strongest 3°C. 2C. Gund Largest BDE weakest bond In that molecule a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest C bond Produces A Weakest Bond Most Strongest Bond Stable radical Strongest Gund produces least stable radicals b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. 人 8°C. formed in bound C cleavage ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. methyl radical •CH3 formed in bund A Cleavagearrow_forward
- Which carbocation is more stable?arrow_forwardAre the products of the given reaction correct? Why or why not?arrow_forwardThe question below asks why the products shown are NOT the correct products. I asked this already, and the person explained why those are the correct products, as opposed to what we would think should be the correct products. That's the opposite of what the question was asking. Why are they not the correct products? A reaction mechanism for how we arrive at the correct products is requested ("using key intermediates"). In other words, why is HCl added to the terminal alkene rather than the internal alkene?arrow_forward
- My question is whether HI adds to both double bonds, and if it doesn't, why not?arrow_forwardStrain Energy for Alkanes Interaction / Compound kJ/mol kcal/mol H: H eclipsing 4.0 1.0 H: CH3 eclipsing 5.8 1.4 CH3 CH3 eclipsing 11.0 2.6 gauche butane 3.8 0.9 cyclopropane 115 27.5 cyclobutane 110 26.3 cyclopentane 26.0 6.2 cycloheptane 26.2 6.3 cyclooctane 40.5 9.7 (Calculate your answer to the nearest 0.1 energy unit, and be sure to specify units, kJ/mol or kcal/mol. The answer is case sensitive.) H. H Previous Nextarrow_forwardA certain half-reaction has a standard reduction potential Ered +1.26 V. An engineer proposes using this half-reaction at the anode of a galvanic cell that must provide at least 1.10 V of electrical power. The cell will operate under standard conditions. Note for advanced students: assume the engineer requires this half-reaction to happen at the anode of the cell. Is there a minimum standard reduction potential that the half-reaction used at the cathode of this cell can have? If so, check the "yes" box and calculate the minimum. Round your answer to 2 decimal places. If there is no lower limit, check the "no" box.. Is there a maximum standard reduction potential that the half-reaction used at the cathode of this cell can have? If so, check the "yes" box and calculate the maximum. Round your answer to 2 decimal places. If there is no upper limit, check the "no" box. yes, there is a minimum. 1 red Πν no minimum Oyes, there is a maximum. 0 E red Dv By using the information in the ALEKS…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Kinetics: Initial Rates and Integrated Rate Laws; Author: Professor Dave Explains;https://www.youtube.com/watch?v=wYqQCojggyM;License: Standard YouTube License, CC-BY