Physical Chemistry
2nd Edition
ISBN: 9781133958437
Author: Ball, David W. (david Warren), BAER, Tomas
Publisher: Wadsworth Cengage Learning,
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 20, Problem 20.91E
What are the rate laws of mechanisms 1 and 2 for oscillating reactions if the second reactions were the rate-determining steps?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Can experimentally determined differential rate laws contain the concentration of intermediates?
Specify the pre-equilibrium and steady-state approximations and explain why they might lead to different conclusions.
What are practical applications of chemical kinetics-related concepts in real life?
Chapter 20 Solutions
Physical Chemistry
Ch. 20 - Prob. 20.1ECh. 20 - The oxidation-reduction reaction between iron...Ch. 20 - The oxidation-reduction reaction between iron...Ch. 20 - The rate of the reaction...Ch. 20 - For a certain reaction between NO and O2, the rate...Ch. 20 - For a reaction between SO2 and Cl2, the rate law...Ch. 20 - Consider the chemical reaction A+B+Cproducts...Ch. 20 - For the chemical reaction...Ch. 20 - Explain how a species might be part of a rate law...Ch. 20 - Refer to Example 20.2 and explain whether any...
Ch. 20 - Rate law experiments dont always give data in the...Ch. 20 - Prob. 20.12ECh. 20 - What must the units on k be for the following rate...Ch. 20 - What must the units on k be for the following rate...Ch. 20 - The reaction 2O33O2 has first-order kinetics and a...Ch. 20 - Digestive processes are first-order processes. The...Ch. 20 - Prob. 20.18ECh. 20 - Derive equation 20.15.Ch. 20 - Prob. 20.20ECh. 20 - To a very good approximation, the cooling of a hot...Ch. 20 - Assume that thermal decomposition of mercuric...Ch. 20 - Prob. 20.23ECh. 20 - Prob. 20.24ECh. 20 - Derive equation 20.22.Ch. 20 - a Write a rate law and an integrated rate law for...Ch. 20 - Derive an expression for the half-life of a a...Ch. 20 - Prob. 20.28ECh. 20 - Rewrite equation 20.27 so that it has the form of...Ch. 20 - One can also define a third-life, t1/3, which is...Ch. 20 - The decomposition of NH3: 2NH3N2+3H2 is a...Ch. 20 - Prob. 20.32ECh. 20 - Prob. 20.33ECh. 20 - When ionic compounds crystallize from a...Ch. 20 - An aqueous reaction that uses the solvent H2O as a...Ch. 20 - The rate law for the reaction...Ch. 20 - If a reaction has the same rate constant, what...Ch. 20 - List at least four experimentally determined...Ch. 20 - Prob. 20.39ECh. 20 - Prob. 20.40ECh. 20 - Prob. 20.41ECh. 20 - Prob. 20.42ECh. 20 - What is the value of the equilibrium constant of a...Ch. 20 - Prob. 20.44ECh. 20 - Prob. 20.45ECh. 20 - Show how equation 20.33 reduces to a simpler form...Ch. 20 - Write expressions like equation 20.37 for a set of...Ch. 20 - Prob. 20.48ECh. 20 - Prob. 20.49ECh. 20 - Prob. 20.50ECh. 20 - Prob. 20.51ECh. 20 - Prob. 20.52ECh. 20 - Prob. 20.53ECh. 20 - Prob. 20.54ECh. 20 - For what values of time, t, will 210Bi and 206Pb...Ch. 20 - Prob. 20.56ECh. 20 - An interesting pair of consecutive reactions...Ch. 20 - Find limiting forms of equation 20.47 for a k1>>k2...Ch. 20 - Prob. 20.59ECh. 20 - Prob. 20.60ECh. 20 - Prob. 20.61ECh. 20 - Prob. 20.62ECh. 20 - At room temperature (22C), the rate constant for...Ch. 20 - Recently, researchers studying the kinetics of...Ch. 20 - A reaction has k=1.771061/(Ms) at 25.0C and an...Ch. 20 - Prob. 20.66ECh. 20 - Prob. 20.67ECh. 20 - Prob. 20.68ECh. 20 - Nitric oxide, NO, is known to break down ozone,...Ch. 20 - a Suggest a mechanism for the bromination of...Ch. 20 - Prob. 20.71ECh. 20 - Prob. 20.72ECh. 20 - Determine a rate law for the chlorination of...Ch. 20 - Determine a rate law for the chlorination of...Ch. 20 - A proposed mechanism for the gas-phase...Ch. 20 - Prob. 20.76ECh. 20 - The nitration of methanol, CH3OH, by nitrous acid...Ch. 20 - Prob. 20.78ECh. 20 - Many gas-phase reactions require some inert body,...Ch. 20 - Prob. 20.80ECh. 20 - Carbonic anhydrase, an enzyme whose substrate is...Ch. 20 - Show that another form of the Michaelis-Menten...Ch. 20 - Prob. 20.83ECh. 20 - Prob. 20.84ECh. 20 - Prob. 20.85ECh. 20 - Prob. 20.86ECh. 20 - Pyrolysis involves heating compounds to break them...Ch. 20 - Prob. 20.88ECh. 20 - Label the elementary processes for the reaction...Ch. 20 - Prob. 20.90ECh. 20 - What are the rate laws of mechanisms 1 and 2 for...Ch. 20 - Estimate G for an elementary process whose rate...Ch. 20 - Prob. 20.93ECh. 20 - Prob. 20.94ECh. 20 - Prob. 20.95ECh. 20 - For the following two reactions H+Cl2HCl+Cl...Ch. 20 - Prob. 20.97ECh. 20 - Prob. 20.98ECh. 20 - Prob. 20.99ECh. 20 - Consider a reaction that has two parallel pathways...Ch. 20 - Consider a set of first-order consecutive...Ch. 20 - Prob. 20.102E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- An aqueous reaction that uses the solvent H2O as a reactant has a given rate law of rate=k[H2O][A] Where A is the other reactant species. Explain why, in most circumstances, this reaction can be defined in terms of pseudo first-order kinetics. What are the units on the rate constant?arrow_forward3) The mathematical expressions for the Arrhenius rate constant for a bimolecular gas-phase reaction and the Maxwell-Boltzman molecular speed distribution of gases are closely related. Explain this relationship, including their temperature dependences, and identify enthalpic and entropic effects for both.arrow_forwardHow can the number of effective collisions be increased?arrow_forward
- Consider a polymer formed by a chain process. By how much does the kinetic chain length change if the concentration of initiator is decreased by a factor of 10.0 and the concentration of monomer is increased by a factor of 5.0?arrow_forwardFor the example of the Lindemann-Christiansen reaction mechanism, use the approximation of the steady state (product concentration does not change with time) until the formula for the speed of product formation is obtained. Discuss the resulting pattern.arrow_forward4) Use collision theory to calculate an estimate of the Arrhenius pre-exponential factor for the reaction of two chlorine, 35CI, atoms at a temperature of 298 K. The collisional cross section of a chlorine atom is estimated to be 0.064 nm?.arrow_forward
- The equilibrium NH3(aq) + H2O(l) ↔NH4+(aq) + OH−(aq) at 25 °C is subjected to a temperature jump which slightly increases the concentration of NH4+(aq) and OH−(aq). The measured relaxation time is 7.61 ns. The equilibrium constant for the system is 1.78 × 10−5 at 25 °C, and the equilibrium concentration of NH3(aq) is 0.15 mol dm−3. (a) Calculate the rate constant for the forward step. kf,eff = _____________. (b) choose a unit for the forward rate constant. (c) Calculate the rate constant for the reverse reaction. krev = _____________.arrow_forwardThe equilibrium NH3(aq) + H2O(l) ↔NH4+(aq) + OH−(aq) at 25 °C is subjected to a temperature jump which slightly increases the concentration of NH4+(aq) and OH−(aq). The measured relaxation time is 7.61 ns. The equilibrium constant for the system is 1.78 × 10−5 at 25 °C, and the equilibrium concentration of NH3(aq) is 0.15 mol dm−3. (a) Calculate the rate constant for the forward step. kf = _____________. Just value in 3 sig. fig., normal or exponential format, e.g. type in 1.16E6 meaning 1.16 x 106, must use capital E here. Choose a unit in the next question, must be in one of those.arrow_forwardThe equilibrium NH3(aq) + H2O(l) ↔NH4+(aq) + OH−(aq) at 25 °C is subjected to a temperature jump which slightly increases the concentration of NH4+(aq) and OH−(aq). The measured relaxation time is 7.61 ns. The equilibrium constant for the system is 1.78 × 10−5 at 25 °C, and the equilibrium concentration of NH3(aq) is 0.15 mol dm−3. (c) Calculate the rate constant for the reverse reaction. krev = _____________. Just value in 3 sig. fig., in normal or exponential format, e.g. 1.16E6 meaning 1.16 x 106 must use capital E. Choose a unit in the next question. .arrow_forward
- The equilibrium NH3(aq) + H2O(l) ↔NH4+(aq) + OH−(aq) at 25 °C is subjected to a temperature jump which slightly increases the concentration of NH4+(aq) and OH−(aq). The measured relaxation time is 7.61 ns. The equilibrium constant for the system is 1.78 × 10−5 at 25 °C, and the equilibrium concentration of NH3(aq) is 0.15 mol dm−3. (a) Calculate the rate constant for the forward step. kf,eff = _____________. (b) choose a unit for the forward rate constant. The equilibrium NH3(aq) + H2O(l) ↔NH4+(aq) + OH−(aq) at 25 °C is subjected to a temperature jump which slightly increases the concentration of NH4+(aq) and OH−(aq). The measured relaxation time is 7.61 ns. The equilibrium constant for the system is 1.78 × 10−5 at 25 °C, and the equilibrium concentration of NH3(aq) is 0.15 mol dm−3. (c) Calculate the rate constant for the reverse reaction.arrow_forwardCalculate the half-life at 100 molecules, 50 molecules and 25 molecules for a 1st order reaction and for a 2nd order reaction. Use k = 0.100 with appropriate units for both the 1st order and the 2nd order.arrow_forwardhe equilibrium NH3(aq) + H2O(l) ↔NH4+(aq) + OH−(aq) at 25 °C is subjected to a temperature jump which slightly increases the concentration of NH4+(aq) and OH−(aq). The measured relaxation time is 7.61 ns. The equilibrium constant for the system is 1.78 × 10−5 at 25 °C, and the equilibrium concentration of NH3(aq) is 0.15 mol dm−3. (a) Calculate the rate constant for the forward step. kf,eff = _____________. Just value in 3 sig. fig., normal or exponential format, e.g. type in 1.16E6 meaning 1.16 x 106, must use capital E here. Choose a unit in the next question, must be in one of those. (b) choose a unit for the forward rate constant. no unit s-1 L/mol/s L2/mol2/sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Kinetics: Initial Rates and Integrated Rate Laws; Author: Professor Dave Explains;https://www.youtube.com/watch?v=wYqQCojggyM;License: Standard YouTube License, CC-BY