Interpretation:
The system at equilibrium responds to the stress to be explained and the factors which can be effects the stresses on equilibrium of the system is to be elaborated.
Concept introduction:
According to Le Chatelier’s principle, when concentration of the reactants and products are changed then equilibrium position is also changes. As lowering the temperature the equilibrium is also shifts towards the right side or product side and more products are formed. So, there is a stress on equilibrium by increasing or decreasing of the concentration of reactants and products. There are various factors which affect the stresses on equilibrium such as addition of reactants, addition of products, removing of the products, moles of reactants verses moles of products, heat and equilibrium positions and temperature and equilibrium constant.
Answer to Problem 13SSC
As lowering the temperature the equilibrium is also shifts towards the right side or product side and more products are formed and vice versa. So, there is a stress on equilibrium by increasing or decreasing of the concentration of reactants and products. With the help of various factors the stresses are overcomes such as addition of reactants, addition of products, removing of the products, moles of reactants verses moles of products, heat and equilibrium positions and temperature and equilibrium constant.
The factors which affect the stresses on the equilibrium system are given as;
a. By addition of reactants
b. By removing of products
c. By addition of products
d. Heat and equilibrium positions
e. Moles of reactants verses mole of products
f. Temperature and equilibrium constant
Explanation of Solution
According to Le Chatelier’s principle, by changing the temperature the equilibrium position is also changes. As temperature is decreases the equilibrium is shifts towards the right side or product side and vice versa. Changing the temperature favors one reaction over the other. On the other hand, at constant temperature the equilibrium is not affected.
Here are the lots of factors which affects the stresses on the equilibrium system such as
1. Addition of reactants: if we added more concentration of reactants to the reaction then no. of collision is increases between the particles. Thus the
2. Addition of products: if a additional product is added to the reaction on products side then equilibrium is shifts towards the left side. The stress is relieved by converting products to reactants.
3. Removing of products: in any equilibrium, the removal of a product results in a shift to the right and the production of more products.
4. Heat and equilibrium position; if heat is added to the reaction then equilibrium is shifts to the side where heat is added up. If temperature is decreases then equilibrium shifts towards the right side because the forward reaction releases the heat and relieves the stress.
5. Temperature and equilibrium constant: when temperature is increases then equilibrium is also changes.
As lowering the temperature the equilibrium is also shifts towards the right side or product side and more products are formed and vice versa. So, there is a stress on equilibrium by increasing or decreasing of the concentration of reactants and products. With the help of various factors the stresses are overcomes such as addition of reactants, addition of products, removing of the products, moles of reactants verses moles of products, heat and equilibrium positions and temperature and equilibrium constant.
The factor which effects the stresses on the equilibrium system are given as;
a. By addition of reactants
b. By removing of products
c. By addition of products
d. Heat and equilibrium positions
e. Moles of reactants verses mole of products
f. Temperature and equilibrium constant
Chapter 17 Solutions
Chemistry: Matter and Change
Additional Science Textbook Solutions
Applications and Investigations in Earth Science (9th Edition)
Brock Biology of Microorganisms (15th Edition)
Campbell Biology in Focus (2nd Edition)
Organic Chemistry (8th Edition)
Cosmic Perspective Fundamentals
Biology: Life on Earth (11th Edition)
- A certain half-reaction has a standard reduction potential Ered +1.26 V. An engineer proposes using this half-reaction at the anode of a galvanic cell that must provide at least 1.10 V of electrical power. The cell will operate under standard conditions. Note for advanced students: assume the engineer requires this half-reaction to happen at the anode of the cell. Is there a minimum standard reduction potential that the half-reaction used at the cathode of this cell can have? If so, check the "yes" box and calculate the minimum. Round your answer to 2 decimal places. If there is no lower limit, check the "no" box.. Is there a maximum standard reduction potential that the half-reaction used at the cathode of this cell can have? If so, check the "yes" box and calculate the maximum. Round your answer to 2 decimal places. If there is no upper limit, check the "no" box. yes, there is a minimum. 1 red Πν no minimum Oyes, there is a maximum. 0 E red Dv By using the information in the ALEKS…arrow_forwardIn statistical thermodynamics, check the hcv following equality: ß Aɛ = KTarrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- Please correct answer and don't used hand raitingarrow_forward(11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)!arrow_forward. 3°C with TH 12. (10pts total) Provide the major product for each reaction depicted below. If no reaction occurs write NR. Assume heat dissipation is carefully controlled in the fluorine reaction. 3H 24 total (30) 24 21 2h • 6H total ● 8H total 34 래 Br2 hv major product will be most Substituted 12 hv Br NR I too weak of a participate in P-1 F₂ hv Statistically most favored product will be major = most subst = thermo favored hydrogen atom abstractor to LL Farrow_forward
- Five chemistry project topic that does not involve practicalarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardQ2. Consider the hydrogenation of ethylene C2H4 + H2 = C2H6 The heats of combustion and molar entropies for the three gases at 298 K are given by: C2H4 C2H6 H2 AH comb/kJ mol¹ -1395 -1550 -243 Sº / J K¹ mol-1 220.7 230.4 131.1 The average heat capacity change, ACP, for the reaction over the temperature range 298-1000 K is 10.9 J K¹ mol¹. Using these data, determine: (a) the standard enthalpy change at 800 K (b) the standard entropy change at 800 K (c) the equilibrium constant at 800 K.arrow_forward
- 13. (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)! Googlearrow_forwardPrint Last Name, First Name Initial Statifically more chances to abstract one of these 6H 11. (10pts total) Consider the radical chlorination of 1,3-diethylcyclohexane depicted below. 4 4th total • 6H total 래 • 4H total 21 total ZH 2H Statistical H < 3° C-H weakest - product abstraction here bund leads to thermo favored a) (6pts) How many unique mono-chlorinated products can be formed and what are the structures for the thermodynamically and statistically favored products? Product 6 Number of Unique Mono-Chlorinated Products Thermodynamically Favored Product Statistically Favored Product b) (4pts) Draw the arrow pushing mechanism for the FIRST propagation step (p-1) for the formation of the thermodynamically favored product. Only draw the p-1 step. You do not need to include lone pairs of electrons. No enthalpy calculation necessary H H-Cl Waterfoxarrow_forward10. (5pts) Provide the complete arrow pushing mechanism for the chemical transformation → depicted below Use proper curved arrow notation that explicitly illustrates all bonds being broken, and all bonds formed in the transformation. Also, be sure to include all lone pairs and formal charges on all atoms involved in the flow of electrons. CH3O II HA H CH3O-H H ①arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY