Concept explainers
To find : the value of function.
Answer to Problem 115E
The value of function
Explanation of Solution
Given information :
The functions are
The function for finding value
Calculation : to find the value of function, it is needed to first find the inverse functions of
To find the inverse function of
To find the inverse function of
Now to find the value of function
Thus, The value of function
Chapter 1 Solutions
PRECALCULUS W/LIMITS:GRAPH.APPROACH(HS)
- a) Sketch the y = cosh x, and indicate its properties. b) prove that sinh 2x = 2 sinh x coshx dx برهن for y=xetanh 3x + cosh¹ x² + 10 dy Find cosh x Find S dx 1-sinh 2 xarrow_forwardQ2. Find the points on the ellipse x²+4y² = 1, where f(x, y) = xy has its extreme value. Q3. Find the moment of inertia about x-axis for the area bounded by the curves x = y² and x=2y-y2 if 8 = y + 1.(20 Mark) Q4 Find the iterated integral for the following then evaluate it: (20 Mark) -1/√2 y2 dxdy -1/√2 1-y2arrow_forwardQ8 Salve: f√coshx-i.dx do Solve: So Q₂ Qio Salve S Sinho + cosho dx 4-x2 Qll Solve Sdx √ex+1 Q12 If y = (x²+1). sech (lmx), and dy dx Q13 If y = /n | cschx + cothxl, Ind dyarrow_forward
- If y = /R/cschx + cothx|, 2nd dy 3) ans. aus. dy: x^" [ x² + x^ (1+/nx)/nx] dx + 252 cosh + + C ans. + 1 aims. aims. -2 csch'e ans. dy да = 2 12) ans. - cschx + A + Carrow_forwardHyperbolic function - Home work Q₁ show that: d (sechu) = -sechu.tanu. Ju dx Q3 show that: coth x = 1 / m² ( x + 1 | Q2 Proof that: d (sechu) = du -(054<1) u√F-4 dx In 1871 X7/1 X-1 Que Proof that: cost'x= | | x+√x=1/.. Qs show that: sinh (A+B) = SinhA. cosh B + Cosh A. sinh B Q6 Find dy, if y = x** +++ Q7 Solve; e-edxarrow_forwardQ6 cons dy= x^" [ x + x^ (1+/mx)/mx] dx Q7) aus. In (cash/ + F Qs) AMS. 252 cosh ++c +A Q₁) aus. e + A Q10) ans. + + C ams. Qu) Q₁2) ans. QIN 941. - cschx -2 csche + A dy da = 2arrow_forward
- Sketch the region of the integral dy dx. Write an equivalent double integral with the order of integration reversed. Do not solve the integral.arrow_forwardg Ske Find the area of the region bounded by the parabola x = 2y- y² + 1 and the line y = x + 1arrow_forward- | العنوان For the volume of the region in the first octant shown in the adjacent Figure. It is bounded by the coordinates planes, the plane: y = 1-x, and the surface:z = cos(лx/2), 0 ≤x≤1 Find the limits of integration for the two iterated integrals below: dz dx dy and dy dz dx Then find the volume of this region by only one of the above two iterated integrals. = cos(x/2) of y=1-xarrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning