Chemical Principles
8th Edition
ISBN: 9781305581982
Author: Steven S. Zumdahl, Donald J. DeCoste
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 15, Problem 6DQ
Interpretation Introduction
Interpretation:
The two ways in which the rate law for the reaction
Concept Introduction:
Expert Solution & Answer
Trending nowThis is a popular solution!
Chapter 15 Solutions
Chemical Principles
Ch. 15 - Prob. 1DQCh. 15 - Prob. 2DQCh. 15 - a graph of [A] versus time for zero-, first-, and...Ch. 15 - Prob. 4DQCh. 15 - Prob. 5DQCh. 15 - Prob. 6DQCh. 15 - Prob. 7DQCh. 15 - Prob. 8DQCh. 15 - Provide a conceptual rationale for the differences...Ch. 15 - Prob. 10E
Ch. 15 - Consider the general reaction aA+bBcC and the...Ch. 15 - Prob. 12ECh. 15 - Prob. 13ECh. 15 - Prob. 14ECh. 15 - Prob. 15ECh. 15 - The hydroxyl radical (OH) is an important...Ch. 15 - Prob. 17ECh. 15 - The reaction 2NO(g)+Cl2(g)2NOCl(g) was studied at...Ch. 15 - Prob. 19ECh. 15 - The following data were obtained for the gas-phase...Ch. 15 - Prob. 21ECh. 15 - Prob. 22ECh. 15 - Prob. 23ECh. 15 - Prob. 24ECh. 15 - Prob. 25ECh. 15 - Prob. 26ECh. 15 - Prob. 27ECh. 15 - Prob. 28ECh. 15 - If the half-life for a reaction is 20. seconds,...Ch. 15 - A certain reaction has the following general form:...Ch. 15 - Prob. 31ECh. 15 - Prob. 32ECh. 15 - The decomposition of hydrogen peroxide was studied...Ch. 15 - Prob. 34ECh. 15 - Prob. 35ECh. 15 - Prob. 36ECh. 15 - At 500K in the presence of a copper surface,...Ch. 15 - Experimental data for the reaction A2B+C have been...Ch. 15 - The reaction NO(g)+O3(g)NO2(g)+O2(g) was studied...Ch. 15 - Determine the forms of the integrated and the...Ch. 15 - Prob. 41ECh. 15 - Prob. 42ECh. 15 - Prob. 43ECh. 15 - Prob. 44ECh. 15 - Prob. 45ECh. 15 - Prob. 46ECh. 15 - Prob. 47ECh. 15 - Prob. 48ECh. 15 - Prob. 49ECh. 15 - Prob. 50ECh. 15 - Prob. 51ECh. 15 - Prob. 52ECh. 15 - Prob. 53ECh. 15 - Prob. 54ECh. 15 - Prob. 55ECh. 15 - Define each of the following. elementary step...Ch. 15 - Define what is meant by unimolecular and...Ch. 15 - What two requirements must be met to call a...Ch. 15 - Prob. 59ECh. 15 - Prob. 60ECh. 15 - A proposed mechanism for a reaction is...Ch. 15 - Is the mechanism NO+Cl2k1NOCl2NOCl2+NOk22NOCl...Ch. 15 - The reaction 2NO(g)+O2(g)2NO2(g) exhibits the rate...Ch. 15 - Prob. 64ECh. 15 - The reaction...Ch. 15 - Prob. 66ECh. 15 - Prob. 67ECh. 15 - Prob. 68ECh. 15 - The following mechanism is proposed for the...Ch. 15 - The following mechanism has been proposed to...Ch. 15 - Consider the hypothetical reaction BE+F which is...Ch. 15 - How is the rate of a reaction affected by each of...Ch. 15 - The central idea of the collision model is that...Ch. 15 - Prob. 74ECh. 15 - Prob. 75ECh. 15 - Consider the following potential energy plots Rank...Ch. 15 - Prob. 77ECh. 15 - Prob. 78ECh. 15 - Prob. 79ECh. 15 - Prob. 80ECh. 15 - Prob. 81ECh. 15 - Chemists commonly use a rule of thumb that an...Ch. 15 - Prob. 83ECh. 15 - Prob. 84ECh. 15 - Prob. 85ECh. 15 - Prob. 86ECh. 15 - For the following reaction profiles, indicate the...Ch. 15 - Prob. 88ECh. 15 - Prob. 89ECh. 15 - Prob. 90ECh. 15 - Prob. 91ECh. 15 - Prob. 92ECh. 15 - The decomposition of NH3 to N2 and H2 was studied...Ch. 15 - One pathway for the destruction of ozone in the...Ch. 15 - Prob. 95ECh. 15 - Prob. 96ECh. 15 - Prob. 97ECh. 15 - Prob. 98ECh. 15 - Prob. 99ECh. 15 - Prob. 100AECh. 15 - Prob. 101AECh. 15 - Prob. 102AECh. 15 - Prob. 103AECh. 15 - Prob. 104AECh. 15 - Prob. 105AECh. 15 - Prob. 106AECh. 15 - Prob. 107AECh. 15 - Prob. 108AECh. 15 - Prob. 109AECh. 15 - The decomposition of NO2(g) occurs by the...Ch. 15 - Prob. 111AECh. 15 - Prob. 112AECh. 15 - Prob. 113AECh. 15 - Prob. 114AECh. 15 - Prob. 115AECh. 15 - Prob. 116AECh. 15 - The compound NO2Cl is thought to decompose to NO2...Ch. 15 - Prob. 118AECh. 15 - Prob. 119AECh. 15 - Prob. 120AECh. 15 - Prob. 121AECh. 15 - Prob. 122AECh. 15 - Prob. 123AECh. 15 - Prob. 124AECh. 15 - Prob. 125AECh. 15 - Prob. 126AECh. 15 - Consider the following reaction: CH3X+YCH3Y+X At...Ch. 15 - The following data were collected in two studies...Ch. 15 - Prob. 129CPCh. 15 - For the reaction 2A+Bproducts afriend proposes the...Ch. 15 - Consider the hypothetical reaction A+B+2C2D+3E In...Ch. 15 - A reaction represented by the equation...Ch. 15 - Prob. 133CPCh. 15 - You are studying the kinetics of the reaction...Ch. 15 - Prob. 135CPCh. 15 - Prob. 136MP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- For the reaction A+BC, explain at least two ways in which the rate law could be zero order in chemical A.arrow_forwardThe Raschig reaction produces the industrially important reducing agent hydrazine, N2H4, from ammonia, NH3, and hypochlorite ion, OCl−, in basic aqueous solution. A proposed mechanism is Step 1: Step 2: Step 3: What is the overall stoichiometric equation? Which step is rate-limiting? What reaction intermediates are involved? What rate law is predicted by this mechanism?arrow_forwardMany biochemical reactions are catalyzed by acids. A typical mechanism consistent with the experimental results (in which HA is the acid and X is the reactant) is Step 1: Step 2: Step 3: Derive the rate law from this mechanism. Determine the order of reaction with respect to HA. Determine how doubling the concentration of HA would affect the rate of the reaction.arrow_forward
- Explain how a species might be part of a rate law but not part of a balanced chemical reaction.arrow_forwardDefine stability from both a kinetic and thermodynamic perspective. Give examples to show the differences in these concepts.arrow_forwardAt 573 K, gaseous NO2(g) decomposes, forming NO(g) and O2(g). If a vessel containing NO2(g) has an initial concentration of 1.9 102 mol/L, how long will it take for 75% of the NO2(g) to decompose? The decomposition of NO2(g) is second-order in the reactant and the rate constant for this reaction, at 573 K, is 1.1 L/mol s.arrow_forward
- One possible mechanism for the decomposition of nitryl chloride, NO2CI, is What is the overall reaction? What rate law would be derived from this mechanism? What effect does increasing the concentration of the product NO2 have on the reaction rate?arrow_forwardOne experimental procedure that can be used to determine the rate law of a reaction is the method of initial rates. What data are gathered in the method of initial rates, and how are these data manipulated to determine k and the orders of the species in the rate law? Are the units for k. the rate constant, the same for all rate laws? Explain. If a reaction is first order in A, what happens to the rate if [A] is tripled? If the initial rate for a reaction increases by a factor of 16 when [A] is quadrupled, what is the order of n? If a reaction is third order in A and [A] is doubled, what happens to the initial rate? If a reaction is zero order, what effect does [A] have on the initial rate of a reaction?arrow_forwardAt 500 K in the presence of a copper surface, ethanol decomposes according to the equation C2H5OH(g)CH3CHO(g)+H2(g) The pressure of C2H5OH was measured as a function of time and the following data were obtained: Time(s) PC2H5OH(torr) 0 250. 100. 237 200. 224 300. 211 400. 198 500. 185 Since the pressure of a gas is directly proportional to the concentration of gas, we can express the rate law for a gaseous reaction in terms of partial pressures. Using the above data, deduce the rate law, the integrated rate law, and the value of the rate constant, all in terms of pressure units in atm and time in seconds. Predict the pressure of C2H5OH after 900. s from the start of the reaction. (Hint: To determine the order of the reaction with respect to C2H5OH, compare how the pressure of C2H5OH decreases with each time listing.)arrow_forward
- Isomerization of CH3NC occurs slowly when CH3NC is heated. CH3NC(g) CH3CN(g) To study the rate of this reaction at 488 K, data on [CH3NC] were collected at various times. Analysis led to the following graph. (a) What is the rate law for this reaction? (b) What is the equation for the straight line in this graph? (c) Calculate the rate constant for this reaction. (d) How long does it take for half of the sample to isomerize? (e) What is the concentration of CH3NC after 1.0 104 s?arrow_forwardNitryl fluoride is an explosive compound that can be made by oxidizing nitrogen dioxide with fluorine: 2 NO2(g) + F2(g) → 2 NO2F(g) Several kinetics experiments, all done at the same temperature and involving formation of nitryl fluoride, are summarized in this table: Write the rate law for the reaction. Determine what the order of the reaction is with respect to each reactant and each product. Calculate the rate constant k and express it in appropriate units.arrow_forwardThe initial rate for a reaction is equal to the slope of the tangent line at t 0 in a plot of [A] versus time. From calculus, initial rate = d[A]dt . Therefore. the differential rate law for a reaction is Rate = d[A]dt=k[A]n. Assuming you have some calculus in your background, derive the zero-, first-, and second-order integrated rate laws using the differential rate law.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Kinetics: Initial Rates and Integrated Rate Laws; Author: Professor Dave Explains;https://www.youtube.com/watch?v=wYqQCojggyM;License: Standard YouTube License, CC-BY