Concept explainers
(a)
Interpretation: The order of the reaction with respect to
Concept Introduction: The rate law for a reaction is represented as follows:
According to above expression, the reaction is x order with respect to A and y order with respect to B and k is rate constant.
(a)
Answer to Problem 135CP
The order of the reaction with respect to both
Explanation of Solution
The given reaction is as follows:
The initial concentration of
The rate law for the above reaction is represented as follows:
The given concentration of
Also, the plot between ln
The rate law can be rewritten as follows:
Here,
This K is the slope value for plot between ln
Taking the ratio of slope from experiment 2 and 3:
Thus, value of m is 1.
Therefore, the order of reaction is 1 with respect to both
(b)
Interpretation: The order of the reaction with respect to
Concept Introduction: The rate law for a reaction is represented as follows:
According to above expression, the reaction is x order with respect to A and y order with respect to B and k is rate constant.
(b)
Answer to Problem 135CP
The value of
Explanation of Solution
The slope is represented as follows:
Here, value of m is equal to 1 thus,
Now, from experiment 1 and 4:
Or,
Or,
Also,
Putting the value from equation (1),
Putting the calculated value in equation (1),
Thus, the value of
(c)
Interpretation: The reason for the two-term dependence of the rate on hydrogen ion concentration needs to be explained.
Concept Introduction: The rate law for a reaction is represented as follows:
According to above expression, the reaction is x order with respect to A and y order with respect to B and k is rate constant.
(c)
Explanation of Solution
There are two possible pathways, one involving hydrogen ion and the rate law is represented as follows:
The other pathway is which do not involve hydrogen ion.
The overall rate depends on the pathway that dominates and this depends on the concentration of hydrogen ion in the solution.
Want to see more full solutions like this?
Chapter 15 Solutions
Chemical Principles
- Hydrogen peroxide and the iodide ion react in acidic solution as follows: H2O2(aq)+3I(aq)+2H+(aq)I3(aq)+2H2O(l) The kinetics of this reaction were studied by following the decay of the concentration of H2O2 and constructing plots of ln[H2O2] versus time. All the plots were linear and all solutions had [H2O2]0 = 8.0 104 mol/L. The slopes of these straight lines depended on the initial concentrations of I and H+. The results follow: [I]0 (mol/L) [H+]0 (mol/L) Slope (min1) 0.1000 0.0400 0.120 0.3000 0.0400 0.360 0.4000 0.0400 0.480 0.0750 0.0200 0.0760 0.0750 0.0800 0.118 0.0750 0.1600 0.174 The rate law for this reaction has the form Rate=[H2O2]t=(k1+k2[H+])[I]m[H2O2]n a. Specify the order of this reaction with respect to [H2O2] and [I]. b. Calculate the values of the rate constants, k1 and k2. c. What reason could there be for the two-term dependence of the rate on [H+]?arrow_forwardWhen boron trifluoride reacts with ammonia, the following reaction occurs: BF3(g)+NH3(g)BF3NH3(g)The following data are obtained at a particular temperature: (a) What is the order of the reaction with respect to BF3, NH3, and overall? (b) Write the rate expression for the reaction. (c) Calculate k for the reaction. (d) When [ BF3 ]=0.533M and NH3=0.300M, what is the rate of the reaction at the temperature of the experiment?arrow_forwardThe following rate constants were obtained in an experiment in which the decomposition of gaseous N2O; was studied as a function of temperature. The products were NO, and NO,. Temperature (K) 3.5 x 10_i 298 2.2 x 10"4 308 6.8 X IO-4 318 3.1 x 10 1 328 Determine Etfor this reaction in kj/mol.arrow_forward
- The oxidation of iodide ion by the hypochlorite ion in the presence of hydroxide ions I(aq) + ClO(aq) IO(aq) + Cl(aq) was studied at 25 C, and the following initial rates data (Y. Chia and R. E. Connick, Journal of Physical Chemistry, Vol. 63, p. 1518, 1959) were collected: (a) Determine the rate law for this reaction. (b) One mechanism that has been proposed for this reaction is the following: Show that the rate law predicted by this mechanism matches the experimentally determined rate law in part a. (Note that when writing the expression for K the equilibrium constant, [H2O] is not involved. See Chapter 15.)arrow_forward11.93 On a particular day, the ozone level in Milwaukee exceeded the EPAs 1-hour standard of 0.12 ppin by 10 ppb. How many ozone molecules would be present in 1 liter of air at the detection site?arrow_forwardThe acid-catalyzed iodination of acetone CH3COCH3(aq) + I2(aq) CH3COCH2I(aq) + HI(aq) is a common laboratory experiment used in general chemistry courses to teach the method of initial rates. The reaction is followed spectrophotometrically by the disappearance of the color of iodine in the solution. The following data (J. P. Birk and D. L Walters, Journal of Chemical Education, Vol. 69, p. 585, 1992) were collected at 23 C for this reaction. Determine the rate law for this reaction.arrow_forward
- Under certain conditions the decomposition of ammonia on a metal surface gives the following data: [NH3] (M) 1.0103 2.0103 3.0103 Rate (moI/L/h1) 1.5106 1.5106 1.5106 Determine the rate equation, the rate constant, and the overall order for this reaction.arrow_forwardExplain why half-lives are not normally used to describe reactions other than first order.arrow_forwardThe half-life of tritium, 3H, is 12.26 years. Tritium is the radioactive isotope of hydrogen. (a) What is the rate constant for the radioactive decay of tritium, in y1 and s1? (b) What percentage of the original tritium is left after 61.3 years?arrow_forward
- The label on a bottle of 3% (by volume) hydrogen peroxide, H2O2, purchased at a grocery store, states that the solution should be stored in a cool, dark place. H2O2decomposes slowly over time, and the rate of decomposition increases with an increase in temperature and in the presence of light. However, the rate of decomposition increases dramatically if a small amount of powdered MnO- is added to the solution. The decomposition products are H2O and O2. MnO2 is not consumed in the reaction. Write the equation for the decomposition of H2O2. What role does MnO2 play? In the chemistry lab, a student substituted a chunk of MnO2 for the powdered compound. The reaction rate was not appreciably increased. WTiat is one possible explanation for this observation? Is MnO2 part of the stoichiometry of the decomposition of H2O2?arrow_forwardSucrose, a sugar, decomposes in acid solution to give glucose and fructose. The reaction is first-order in sucrose, and the rate constant at 25 C is k = 0.21 h1. If the initial concentration of sucrose is 0.010 mol/L, what is its concentration after 5.0 h?arrow_forwardThe decomposition of iodoethane in the gas phase proceeds according to the following equation: C2H5I(g)C2H4(g)+HI(g) At 660. K, k = 7.2 104 sl; at 720. K, k = 1.7 102 sl. What is the value of the rate constant for this first-order decomposition at 325C? If the initial pressure of iodoethane is 894 torr at 245C, what is the pressure of iodoethane after three half-lives?arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning