Chemistry: Principles and Reactions
8th Edition
ISBN: 9781305079373
Author: William L. Masterton, Cecile N. Hurley
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 15, Problem 45QAP
Interpretation Introduction
Interpretation:
An overall net ionic equation needs to be determined. The value of K for the reaction where
Concept introduction:
Net ionic equation is the ionic equation in which reactants are written in the form of ions if they occur as ions in a reaction medium and product form are shown as combination of ions. The charges of ions and each atom in the reaction are balanced.
K can be calculated as follows:
Where,
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
4
A chemistry graduate student is given 100. mL of a 0.50M methylamine (CH,NH,) solution. Methylamine is a weak base with K,=4.4 × 10 *. What mass of
CH,NH,Cl should the student dissolve in the CH, NH, solution to turn it into a buffer with pH = 10.93?
You may assume that the volume of the solution doesn't change when the CH,NH, Cl is dissolved in it. Be sure your answer has a unit symbol, and round it to
2 significant digits.
olo
Ar
x10
4) A highly toxic hydrogen cyanide (HCN) is a weak acid. A chemical engineer plans to determine
pH of a 50 mL sample of HCN (0.10 M) in a titration process. To this end, she used 0.20 M NaOH
as a titrant in varying volumes. Calculate the pH of the solution at the following points:
(Ka for HCN=6.2×10-¹0)
(a) Before addition of NaOH (initial pH),
(b) After 10.00 mL of titrant addition,
(c) After 25.00 mL of titrant addition,
(d) After 50.00 mL of titrant addition.
You want a buffer solution, and you choose the following acid and conjugate base: carbonic acid, H₂CO3, and sodium hydrogen carbonate, NaHCO3
K =4.3x 10-7 for carbonic acid.
a
If you want a 0.1 M solution of carbonic acid, what concentration of sodium hydrogen carbonate will give you a buffer with a pH of exactly 7.07
O [NaHCO3] 0.427 M
O [NaHCO3] 0.724 M
O (NaHCO3] 0.247 M
O [NaHCO3] 0.832 M
Chapter 15 Solutions
Chemistry: Principles and Reactions
Ch. 15 - Write a net ionic equation for the reaction...Ch. 15 - Write a net ionic equation for the reaction...Ch. 15 - Write a balanced net ionic equation for the...Ch. 15 - Write a balanced net ionic equation for the...Ch. 15 - Calculate K for the reactions in Question 1.Ch. 15 - Calculate K for the reactions in Question 2.Ch. 15 - Calculate K for the reactions in Question 3.Ch. 15 - Calculate K for the reactions in Question 4.Ch. 15 - Calculate [H+] and pH in a solution in which...Ch. 15 - Calculate [OH-] and pH in a solution in which the...
Ch. 15 - A buffer is prepared by dissolving 0.0250 mol of...Ch. 15 - Prob. 12QAPCh. 15 - A buffer solution is prepared by adding 15.00 g of...Ch. 15 - A buffer solution is prepared by adding 5.50 g of...Ch. 15 - A solution with a pH of 9.22 is prepared by adding...Ch. 15 - An aqueous solution of 0.057 M weak acid, HX, has...Ch. 15 - Which of the following would form a buffer if...Ch. 15 - Which of the following would form a buffer if...Ch. 15 - Calculate the solubility (in grams per liter) of...Ch. 15 - Calculate the solubility (in grams per liter) of...Ch. 15 - Copper(l) chloride, CuCl, is the starting material...Ch. 15 - Prob. 22QAPCh. 15 - Prob. 23QAPCh. 15 - Ksp for CaSO4 at 100C is estimated to be1.6105. At...Ch. 15 - Prob. 25QAPCh. 15 - At 25C, 10.24 mg of Cr(OH)2 are dissolved in...Ch. 15 - Calcium nitrate is added to a sodium sulfate...Ch. 15 - Cadmium(ll) chloride is added to a solution of...Ch. 15 - Water from a well is found to contain 3.0 mg of...Ch. 15 - Silver(I) sulfate (Ksp=1.2105) is used in the...Ch. 15 - A solution is prepared by mixing 13.00 mL of...Ch. 15 - A solution is prepared by mixing 45.00 mL of 0.022...Ch. 15 - A solution is 0.047 M in both NaF and Na2CO3....Ch. 15 - Solid lead nitrate is added to a solution that is...Ch. 15 - A solution is made up by adding 0.632 g of barium...Ch. 15 - A solution is made up by adding 0.839 g of...Ch. 15 - Prob. 37QAPCh. 15 - To a beaker with 500 mL of water are added 95 mg...Ch. 15 - Write net ionic equations for the reaction of H+...Ch. 15 - Prob. 40QAPCh. 15 - Prob. 41QAPCh. 15 - Write a net ionic equation for the reaction with...Ch. 15 - Prob. 43QAPCh. 15 - Write a net ionic equation for the reaction with...Ch. 15 - Prob. 45QAPCh. 15 - Write an overall net ionic equation and calculate...Ch. 15 - Consider the reaction...Ch. 15 - Consider the reaction BaF2(s)+SO42(aq)BaSO4(s)+2...Ch. 15 - Aluminum hydroxide reacts with an excess of...Ch. 15 - Prob. 50QAPCh. 15 - Calculate the molar solubility of gold(I) chloride...Ch. 15 - Calculate the molar solubility of PbCl2 in 0.2 M...Ch. 15 - For the reaction...Ch. 15 - For the reaction Zn(OH)2(s)+2OH(aq)Zn(OH)42(aq)...Ch. 15 - What are the concentrations of Cu2+, NH3, and...Ch. 15 - Prob. 56QAPCh. 15 - Calcium ions in blood trigger clotting. To prevent...Ch. 15 - Prob. 58QAPCh. 15 - A town adds 2.0 ppm of F- ion to fluoridate its...Ch. 15 - Consider the following hypothetical dissociation:...Ch. 15 - Prob. 61QAPCh. 15 - Consider a 2.0-L aqueous solution of 4.17 M NH3,...Ch. 15 - Marble is almost pure CaCO3. Acid rain has a...Ch. 15 - Prob. 64QAPCh. 15 - Prob. 65QAPCh. 15 - The box below represents one liter of a saturated...Ch. 15 - Consider a saturated solution of BaCO3 at 7.5C....Ch. 15 - Prob. 68QAPCh. 15 - Consider the insoluble salts JQ, K2R, L2S3, MT2,...Ch. 15 - Prob. 70QAPCh. 15 - Consider the equilibrium curve for AgCl shown...Ch. 15 - Dissolving CaCO3 is an endothermic reaction. The...Ch. 15 - Challenge Problems Insoluble hydroxides such as...Ch. 15 - What is the solubility of CaF2 in a buffer...Ch. 15 - What is [Br-] just as AgCl begins to precipitate...Ch. 15 - Prob. 76QAPCh. 15 - Prob. 77QAPCh. 15 - Prob. 78QAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- 6a. Draw the Lewis Dot structure for the following diprotic acid: HOOC-CH,-COOH. 38.5 mL of a 1.15 M solution of this acid is titrated to the equivalence point with 0.69 M KOH. Write the balanced equation for this reaction and determine the volume of base needed to completely neutralize the acid.arrow_forwardAn analytical chemist is titrating 156.4 mL of a 0.3600 M solution of formic acid (H,CO,) with a 0.6800 M solution of NaOH, The p K of formic acid is 3.74. Calculate the pH of the acid solution after the chemist has added 91.45 mL of the NaOH solution to it. Note for advanced students: you may assume the final volume equals the initial volume of the solution plus the volume of NaOH solution added. Round your answer to 2 decimal places. alo pH =|| Explanation Check 2021 McGraw-Hill Education. Al Rights Reserved. Terms of Use I Privacy Accessibility O 1:0 acer S Faarrow_forwardWrite the chemical reactions whose equilibrium constants are Kp and Ką for imidazole (C,H,N,) and imidazole hydrochloride (C,H,N,H*CI¯), respectively. K, reaction: 2.865 Incorrect K, reaction: 2.323 Incorrect Calculate the pH of a solution prepared by mixing 1.60 g of imidazole with 1.60 g of imidazole hydrochloride and diluting to 100.0 mL. The pKą of imidazole hydrochloride is 6.993. 2.07 pH Incorrect Calculate the pH of the solution if 2.00 mL of 1.06 M HCIO, are added. pH = Incorrect How many milliliters of 1.06 M HCI,, should be added to 1.60 g of imidazole to give a pH of 6.993? 2.865 volume: mL. Incorrectarrow_forward
- One of the buffer systems the human body has to regulate pH is based on the phosphate anion. If blood has a pH of 7.40, and the three Ka values for phosphoric acid are 7.52 × 10−3, 6.23 × 10−8, and 4.8 × 10−13, write the chemical equilibrium equation showing the phosphate species that are involved in this buffer.arrow_forwardIron in drinking water is removed by precipitation of the Fe3+ ion by reaction with NaOH to produce iron(III) hydroxide. Write the balanced chemical equation and the net ionic equation for this reaction.arrow_forward33. Consider a buffer solution that contains 0.45 M HCOOH and 0.55 M NaHCOO. Note that the Ka for formic acid (HCOOH) is 1.8 x 104. (a) Calculate the pH of this buffer solution. pH = (b) Write the net ionic chemical equation that occurs when potassium hydroxide (KOH) (MW of KOH = 56.1 g/mol) is added to the buffer. (c) If 0.260 g of solid KOH is added to 250. mL of this buffer solution, what is the resulting pH of the solution? New pH =arrow_forward
- 3 and 4 go togetherarrow_forward3. A 20.0 mL sample of 0.200 M cyanic acid (HOCN, Ka-3.3 x 104) is titrated with 0.400 M NaOH. Calculate the pH and % dissociation of the cyanic acid solution before any NaOH solution has been added. (a) (b) Calculate the pH of the solution after 3.00 mL of NaOH solution has been added. Calculate the pH of the solution at the half equivalence point. (c) (d) Calculate the pH of the solution at the equivalence point. and I 11arrow_forward0.0500 M HF (Ka= 7.20 x 10–4) determine the equilibrium molar concentration of H3O+ and equilibrium molar concentration of HF (in 3 sig. figures).arrow_forward
- A buffer solution is made by dissolving 0.230 moles of sodium hypochlorite in 1.00 L of 0.220 M hypochlorous acid. What is the pH of the solution after 0.0100 moles of sodium hydroxide is added? (The K a of HClO is 2.9 × 10 −8.)arrow_forwardTo 1.0 L of a 0.36 M solution of HClO2 is added 0.19 mol of NaClO. Calculate the [HClO2][HClO2] at equilibrium. Express your answer using two significant figures.arrow_forwardThe titration curve as shown is for the titration of 25.00 mL of 0.100 M CH3CO2H with 0.100 M NaOH. The reaction can be represented as: CH3 CO2 H + OH− ⟶ CH3 CO2− + H2 O(a) What is the initial pH before any amount of the NaOH solution has been added? Ka = 1.8 × 10−5 for CH3CO2H. (b) Find the pH after 25.00 mL of the NaOH solution have been added.(c) Find the pH after 12.50 mL of the NaOH solution has been added.(d) Find the pH after 37.50 mL of the NaOH solution has been added.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
General Chemistry | Acids & Bases; Author: Ninja Nerd;https://www.youtube.com/watch?v=AOr_5tbgfQ0;License: Standard YouTube License, CC-BY