Find the factors of safety with respect to overturning, sliding, and bearing capacity failure.
Answer to Problem 15.2P
The factor of safety with respect to overturning is
The factor of safety with respect to sliding is
The factor of safety with respect to bearing capacity failure is
Explanation of Solution
Given information:
The cohesion
The unit weight
The friction angle
The unit weight
The backfill angle
Calculation:
Check stability with respect to overturning.
Consider point C as the left end of the toe base as named as C.
Divide the retaining wall into section as in Figure 1.
Sketch the section of the retaining wall as shown in Figure 1.
Here,
Refer Table 14.2, “Values of
Take the value of active earth pressure coefficient
Refer Figure 1.
Find the height of the inclined portion of backfill
Substitute 2 m for
Find the total height of the inclined backfill
Here, H is the height of retaining wall and D is the depth to the bottom of the base slab.
Substitute 5.0 m for H, 1.0 m for D, and 0.54 m
Find the active earth pressure
Substitute
Find the vertical component of the active earth pressure
Substitute
Find the horizontal component of the active earth pressure
Substitute
Find the weight of section 1
Here,
Substitute 1.5 m for
Find the moment arm or lever arm
Substitute 1.5 m for
Find the moment about point C
Substitute
Find the weight of section 2
Here,
Substitute 0.5 m for
Find the moment arm or lever arm
Substitute 1.5 m for
Find the moment about point C
Substitute
Find the weight of section 3
Here,
Substitute 2.0 m for
Find the moment arm or lever arm
Substitute 0.5 m for
Find the moment about point C
Substitute
Find the weight of section 4
Here,
Substitute 2.0 m for
Find the moment arm or lever arm
Substitute 2.0 m for
Find the moment about point C
Substitute
Find the weight of section 5
Substitute 2.0 m for
Find the moment arm or lever arm
Substitute 2.0 m for
Find the moment about point C
Substitute
Find the moment arm or lever arm
Substitute 0.5 m for
Find the moment about point C
Substitute
Find the total moment about the point C
Substitute
Find the total vertical load
Substitute
Summarize the values of weight, moment arm from C, and moment about C as shown in Table 1.
Section | Weight (kN/m) | moment arm from C | moment about C |
1 | 108 | 1 | 108 |
2 | 72 | 1.75 | 126 |
3 | 144 | 2.67 | 384.5 |
4 | 111 | 3.33 | 369.6 |
5 | 10 | 3.33 | 33.33 |
4 | 121.6 | ||
Find the overturning moment
Substitute
Find the factor of safety
Substitute
Therefore, the factor of safety with respect to overturning is
Check the stability with respect to sliding.
Find the coefficient of passive earth pressure
Substitute
Find the passive earth pressure
Here,
Substitute 1 m for D,
Find the angle of friction
Substitute
Find the factor of safety against sliding
Substitute
Therefore, the factor of safety with respect to sliding is
Check the stability with bearing capacity failure.
Find the eccentricity (e) using the equation:
Substitute 4 m for B,
Check for eccentricity.
Substitute 0.116 m for e and 4 m for B.
The eccentricity is within the limit. Therefore, there is no tensile stress produced at the end of the steel section.
Find the maximum pressure
Substitute
Find the effective breadth
Substitute 4 m for B and 0.116 m for e.
Refer Table 16.2, “Bearing Capacity Factors” in the textbook.
Take the value of bearing capacity factor,
Take the value of bearing capacity factor,
Take the value of bearing capacity factor,
Find the load (q) due the soil in front of heel using the equation:
Substitute 1.0 m for D and
Find the inclination angle of vertical load
Substitute
Find the inclination factor
Substitute
Find the depth factor
Here,
Substitute
The depth factor
Find the inclination factor
Substitute
Find the ultimate bearing capacity of the shallow foundation
Substitute
Find the factor of safety against bearing capacity failure
Substitute
Therefore, the factor of safety with respect to bearing capacity failure is
Want to see more full solutions like this?
Chapter 15 Solutions
Fundamentals of Geotechnical Engineering (MindTap Course List)
- 3. The horizontal prestress at the centroid of a concrete beam of rectangular crosssection 120 mm and 250 mm, is 7 N/mm2 and the maximum shearing force on the beam is 70 kN. Calculate the maximum principal tensile stress. What is the minimum vertical prestress required to eliminate this principal tensile stress?arrow_forwarddesign of one way slabsarrow_forwardQUESTION 1 A 300mm x 600mm prestressed beam has a prestress loss of 15%. Neglecting weight of beam, find P and e 25. When the compressive stress (top and bottom) is 24 MPa. c. P = 4982 kN d. P - 5085 kN 26. When the compressive stress at the bottom is 12 MPa. While that at the top is 2 MPA in tension. a. P - 1059 kN, e - 140 b. P = 1059 kN, e = 100 c. P - 1259 kN, c - 140 d. P = 1159 KN, e = 130 27. When the compressive stress at the bottom is 16 MPa while that at the top is zero. a. P = 1094 kN, e = 140 b. P = 1694 kN, e = 100 c. P = 1294 kN, e = 140 d. P = 1194 kN, c = 130 a. P = 5782 kN b. P - 6082 kN QUESTION 2 A rectangular channel 5.8 m wide by 1.4 m deep was laid to have a hydraulic slope of 0.001. Using n = 0.013. Determine the velocity of the channel. c. 1.29 m/s d. 3.81 m/s . 2.34 m/s .. 4.25 m/s QUESTION 3 A 1.5 mx 4 m tank is shown below. Find h. a. 1.35 m c. 1.75 m b. 1.25 m d. 1.05 m 3.0m Oll C 0.5m water V8 4.0m QUESTION 4 A compound curve has a common tangent equal to…arrow_forward
- A rectangular concrete beam has a width of 400 mm and an effective depth of 700 mm. It is reinforced with five 28-mm diameter bars for tension only. Concrete strength is f's = 21 MPa and steel yield strength is fy = 275 MPa. Which of the following most nearly gives the depth of the rectangular compression stress block? A. 188.15 mm B. 151.93 mm C. 139.51 mm D. 118.58 mmarrow_forwardThe proposed design of a cantilever retaining wall is shown in Figure 1. The unit weight of concrete is 24kN/m³ and the soil has unit weight 18kN/m³. The soil peak strength parameters are c'-0, 6-32°. The soil behind the wall carries a uniform surcharge of 20kN/m². a) Calculate the safety factor for overturning (minimum required F.S.=2.0). b) Calculate the safety factor for sliding (minimum required F.S.=1.5). 1,35 0,40 Figure 1. 3,50m q-2t/m³ 5,00 m 1,75 m 0,40 marrow_forwardR2arrow_forward
- For the loaded area shown below, determine the increase in vertical stress (4p) at 5 ft below points B and C at the depth of the pipe, which is z = 5 feet below the footing, and 3 feet a way from its edge. The footing has a UDL , q = 1800 lb/ft2. 1,800 B. A 5t 4ft 5t 2 B 10 t 3 ft 10 ft 3 ft PLAN VIEW SECTIONarrow_forwardDetermine the nominal flexural strength Mn of a 9-in-thick one-way slab reinforced with a single layer of No. 5 bars spaced 8 in on center (Grade 60). Assume d = 7.9 in and f'c = 4000 psiarrow_forward6. A rectangular 12m x 9m coal pillar is located 100m below surface. Panel road widths are 7m, mining height is 2.5m. Panel encounters a dolerite sill and the load increases by 15%. i. Calculate the load and safety of the pillar. ii. Calculate the thickness of the dolerite sill and new safety factor. iii. Discuss the controllable parameter/s in regards to enhancing the stability of the beam in the roof.arrow_forward
- Given: - Density of concrete = 2260kg/cu m. - Uplift pressure, U : full at the heel to zero at the toe Solve for the FS against overturning. 13.8m 3m 6marrow_forwardReg No= 418arrow_forwardA 360 mm thick footing slab supports a 300 mm thick wall carrying uniform service dead load of 283.7 kN/m and service live load of 145.6 kN/m. The base of the wall footing slab is 1.1 m from the ground surface. Use 16 mm diameter for main bars. Design parameters are as follows: ysoil = 18 kN/m3, yconc = 24 kN/m3, qa = 215.8 kPa, fc = 27 MPa and fy = 414 MPa. Calculate the allowable nominal beam shear stress in MPa. Express your answer in 3 decimal places.arrow_forward
- Fundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning