The equilibrium constant Kc for the reaction
is 0.83 at 375°C. A 14.6-g sample of ammonia is placed in a 4.00-L flask and heated to 375°C. Calculate the concentrations of all the gases when equilibrium is reached.
Interpretation:
To calculate the equilibrium concentration values are given homogenies equilibrium of ammonia (NH3) dissociation reaction with respective pressure and temperature at
Concept Introduction:
Equilibrium concentration: If Kc and the initial concentration for a reaction and calculate for both equilibrium concentration, and using the (ICE) chart and equilibrium constant and derived changes in respective reactants and products.
Pressure effect in equilibrium: The equilibrium constant calculated from the partial pressures of a reaction equation. It is used to express the relationship between product pressures and reactant pressures. It is unites number, although it relates the pressures.
Homogeneous equilibrium: A homogeneous equilibrium involved has a everything present in the same phase and same conditions, for example reactions where everything is a gas, or everything is present in the same solution.
Temperature affect in equilibrium: This process chemical shifts changes (or) towards the product or reactant, which can be determined by studying the reaction and deciding whether it is exothermic or endothermic.
Le Chatelier's Principle (Kp): The closed system is an increase in pressure, the equilibrium will shift towards the sides of the reaction with some moles of gas. The decrease in pressure the equilibrium will shift towards the side of the reaction with high moles of gas.
Answer to Problem 15.145QP
The reactant and product each equilibrium concentration (ICE) values for the given
Explanation of Solution
To find: The equilibrium concentration should be identified given the gases phase reaction.
Analyze the chemical equilibrium reaction.
Given the gas phase equilibrium concentration reaction is the combined reaction; it is the product of the constants for this component reaction. This equilibrium reaction expression contains same conditions like gas phase. Hence this process homogenous equilibrium further the equilibrium constant can also be represented by Kc, were the Kp represents partial pressure. Then the each (reactant and product) molecule equilibrium concentration
To find: Calculate the each concentration values for given the equilibrium constant (Kc) of ammonia dissociation reaction.
Calculate and analyze the respective concentration values at
First let’s calculate the initial concentration of ammonia.
Further we set up a ICE table to represent the equilibrium concentrations. With respect the amount of (NH3) that reacts as (2x) fallowed by,
The given ammonia dissociation reaction the respective reactant to give a two moles of products, and this reaction proceeds in same phase and this equilibrium reaction expression contains single conditions like gases phase, the equilibrium constant can also be represented by Kp, were the “P” partial pressure. The each reactant and product concentration values are derived given above equation at
The each of reactant and product equilibrium concentration values are derived given the gas phase ammonia
Want to see more full solutions like this?
Chapter 15 Solutions
Chemistry: Atoms First
- Suppose a reaction has the equilibrium constant K = 1.3 108. What does the magnitude of this constant tell you about the relative concentrations of products and reactants that will be present once equilibrium is reached? Is this reaction likely to be a good source of the products?arrow_forwardAt 2300 K the equilibrium constant for the formation of NO(g) is 1.7 103. N2(g) + O2(g) 2 NO(g) (a) Analysis shows that the concentrations of N2 and O2 are both 0.25 M, and that of NO is 0.0042 M under certain conditions. Is the system at equilibrium? (b) If the system is not at equilibrium, in which direction does the reaction proceed? (c) When the system is at equilibrium, what are the equilibrium concentrations?arrow_forwardAt room temperature, the equilibrium constant Kc for the reaction 2 NO(g) ⇌ N2(g) + O2(g) is 1.4 × 1030. Is this reaction product-favored or reactant-favored? Explain your answer. In the atmosphere at room temperature the concentration of N2 is 0.33 mol/L, and the concentration of O2 is about 25% of that value. Calculate the equilibrium concentration of NO in the atmosphere produced by the reaction of N2 and O2. How does this affect your answer to Question 11?arrow_forward
- 12.103 Methanol, CH3OH, can be produced by the reaction of CO with H2, with the liberation of heat. All species in the reaction are gaseous. What effect will each of the following have on the equilibrium concentration of CO? (a) Pressure is increased, (b) volume of the reaction container is decreased, (c) heat is added, (d) the concentration of CO is increased, (e) some methanol is removed from the container, and (f) H2 is added.arrow_forwardNitrosyl chloride, NOC1, decomposes to NO and Cl2 at high temperatures. 2 NOCl(g) ⇌ 2 NO(g) + Cl2(g) Suppose you place 2.00 mol NOC1 in a 1.00–L flask, seal it, and raise the temperature to 462 °C. When equilibrium has been established, 0.66 mol NO is present. Calculate the equilibrium constant Kc for the decomposition reaction from these data.arrow_forwardThe equilibrium constant Kc for the synthesis of methanol, CH3OH. CO(g)+2H2(g)CH3OH(g) is 4.3 at 250C and 1.8 at 275C. Is this reaction endothermic or exothermic?arrow_forward
- Consider 0.200 mol phosphorus pentachloride sealed in a 2.0-L container at 620 K. The equilibrium constant, Kc, is 0.60 for PCl5(g) PCl3(g) + Cl2(g) Calculate the concentrations of all species after equilibrium has been reached.arrow_forwardThe decomposition of PCl5(g) to form PCl3(g) and Cl2(g) has Kc = 33.3 at a high temperature. If the initial concentration of PCl5 is 0.1000 M, what are the equilibrium concentrations of the reactants and products?arrow_forwardThe diagram represents an equilibrium mixture for the reaction N2(g) + O2(g) ⇌ 2 NO(g) Estimate the equilibrium constant.arrow_forward
- Kc = 5.6 1012 at 500 K for the dissociation of iodine molecules to iodine atoms. I2(g) 2 I(g) A mixture has [I2] = 0.020 mol/Land [I] = 2.0 108 mol/L. Is the reaction at equilibrium (at 500 K)? If not, which way must the reaction proceed to reach equilibrium?arrow_forwardFor the reaction N2(g)+3H2(g)2NH3(g) show that Kc = Kp(RT)2 Do not use the formula Kp = Kc(RT)5n given in the text. Start from the fact that Pi = [i]RT, where Pi is the partial pressure of substance i and [i] is its molar concentration. Substitute into Kc.arrow_forwardAn equilibrium mixture of SO2, O2, and SO3 at a high temperature contains the gases at the following concentrations: |SO2| = 3.77 103 mol/L, [O2] = 4.30 103 mol/L, and [SO3] = 4.13 103 mol/L. Calculate the equilibrium constant, Kc, for the reaction. 2 SO2(g) + O2(g) 2 SO3(g)arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning