
The graph shows the power consumption for a day in September in San Francisco. (P is measured in megawatts; t is measured in hours starting at midnight.)
(a) What was the power consumption at 6 AM? At 6 PM?
(b) When was the power consumption the lowest? When was it the highest? Do these times seem reasonable?
(a)

The power consumption at 6 am and at 6 pm.
Answer to Problem 13E
The power consumption at 6 am is 500 MW and at 6 pm is approximate to 730MW.
Explanation of Solution
In the given graph of power consumption for a day in September in San Francisco, the x-axis represents the time in hours and the y-axis represents the power consumption in megawatts.
From the graph, it is noticed that 6 am corresponds to the y-value of 500 MW. Thus, the power consumption at 6 am is 500 MW.
Similarly, it is found that the corresponding value of y-axis at 6 pm is lower than 740 MW and higher than 720 MW, and hence the power consumption is approximately 730 MW.
Thus, the power consumption at 6 pm is 730 MW.
(b)

At what time the power consumption was low and high; also state whether these time seems to be reasonable or not.
Answer to Problem 13E
The lowest power consumption occurs at 4 am and the highest power consumption occurs at just before noon.
The power consumption according to the time seems to be reasonable.
Explanation of Solution
From the given graph, it is obvious that the value of y is minimum at t = 4. Therefore, the lowest power consumption occurs at 4 am.
From the given graph, it is found that the value of y is maximum at t ≈ 12. Therefore, the highest power consumption occurs at just before noon.
By considering the individuals and business needs, the time of the lowest and the highest power consumptions are seems to be reasonable.
Chapter 1 Solutions
Single Variable Calculus: Concepts and Contexts, Enhanced Edition
Additional Math Textbook Solutions
Precalculus
Intermediate Algebra (13th Edition)
APPLIED STAT.IN BUS.+ECONOMICS
Elementary Statistics: A Step By Step Approach
Introductory Statistics
Basic College Mathematics
- (14 points) Let S = {(x, y, z) | z = e−(x²+y²), x² + y² ≤ 1}. The surface is the graph of ze(+2) sitting over the unit disk.arrow_forward6. Solve the system of differential equations using Laplace Transforms: x(t) = 3x₁ (t) + 4x2(t) x(t) = -4x₁(t) + 3x2(t) x₁(0) = 1,x2(0) = 0arrow_forward3. Determine the Laplace Transform for the following functions. Show all of your work: 1-t, 0 ≤t<3 a. e(t) = t2, 3≤t<5 4, t≥ 5 b. f(t) = f(tt)e-3(-) cos 4τ drarrow_forward
- 4. Find the inverse Laplace Transform Show all of your work: a. F(s) = = 2s-3 (s²-10s+61)(5-3) se-2s b. G(s) = (s+2)²arrow_forward1. Consider the differential equation, show all of your work: dy =(y2)(y+1) dx a. Determine the equilibrium solutions for the differential equation. b. Where is the differential equation increasing or decreasing? c. Where are the changes in concavity? d. Suppose that y(0)=0, what is the value of y as t goes to infinity?arrow_forward2. Suppose a LC circuit has the following differential equation: q'+4q=6etcos 4t, q(0) = 1 a. Find the function for q(t), use any method that we have studied in the course. b. What is the transient and the steady-state of the circuit?arrow_forward
- 5. Use variation of parameters to find the general solution to the differential equation: y" - 6y' + 9y=e3x Inxarrow_forwardLet the region R be the area enclosed by the function f(x) = ln (x) + 2 and g(x) = x. Write an integral in terms of x and also an integral in terms of y that would represent the area of the region R. If necessary, round limit values to the nearest thousandth. 5 4 3 2 1 y x 1 2 3 4arrow_forward(28 points) Define T: [0,1] × [−,0] → R3 by T(y, 0) = (cos 0, y, sin 0). Let S be the half-cylinder surface traced out by T. (a) (4 points) Calculate the normal field for S determined by T.arrow_forward
- (14 points) Let S = {(x, y, z) | z = e−(x²+y²), x² + y² ≤ 1}. The surface is the graph of ze(+2) sitting over the unit disk. = (a) (4 points) What is the boundary OS? Explain briefly. (b) (4 points) Let F(x, y, z) = (e³+2 - 2y, xe³±² + y, e²+y). Calculate the curl V × F.arrow_forward(6 points) Let S be the surface z = 1 − x² - y², x² + y² ≤1. The boundary OS of S is the unit circle x² + y² = 1. Let F(x, y, z) = (x², y², z²). Use the Stokes' Theorem to calculate the line integral Hint: First calculate V x F. Jos F F.ds.arrow_forward(28 points) Define T: [0,1] × [−,0] → R3 by T(y, 0) = (cos 0, y, sin 0). Let S be the half-cylinder surface traced out by T. (a) (4 points) Calculate the normal field for S determined by T.arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





