College Physics (10th Edition)
10th Edition
ISBN: 9780321902788
Author: Hugh D. Young, Philip W. Adams, Raymond Joseph Chastain
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 10, Problem 5CQ
(a) Can you change the location of your body’s center of mass? How? (b) Can you change your body’s moment of inertia? How?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Problem 3: Suppose we want to calculate the moment of inertia of a 65.5 kg skater, relative to a vertical axis through their center of mass.
Part (a) First calculate the moment of inertia (in kg m2) when the skater has their arms pulled inward by assuming they are cylinder of radius 0.11
m.
sin()
cos()
tan()
7
8
9
HOME
cotan()
asin()
acos()
E
4
5
atan()
acotan()
sinh()
1
3
cosh()
tanh()
cotanh()
END
ODegrees O Radians
Vol BACKSPACE DEL CLEAR
Submit
Hint
Feedback
I give up!
Part (b) Now calculate the moment of inertia of the skater (in kg m?) with their arms extended by assuming that each arm is 5% of the mass of
their body. Assume the body is a cylinder of the same size, and the arms are 0.825 m long rods extending straight out from the center of their body being rotated
at the ends.
A binary star system consists of two stars (one star with a mass of 4.0 x 10^36 kg and the second star having a mass of 3.1 x 10^34 kg) that are separated by a distance of 3 x 10^12 m.
a) Determine the center of mass of the binary star system relative to the position of each star.
b) Find the moment of inertia of the binary star system rotating around its center of mass.
As a physics demonstration, a special bowling ball is made so that it can be rotated about its center of mass to get a feel for how "big" a moment of inertia of 1 kg⋅m2 is. The average bowling ball has a weight of 15.4 lbs and a circumference of 26.3 inbut it does not have a moment of inertia equal to 1 kg⋅m2.Since the sporting goods manufacturer has no understanding of how "big" 1 kg⋅m21 is, calculate the diameter ? demo of the demo bowling ball, in inches, that it will need to manufacture. Assume that bowling balls are solid, with a constant density.
D of demo required in inches.
Chapter 10 Solutions
College Physics (10th Edition)
Ch. 10 - When tightening a bolt, mechanics sometimes extend...Ch. 10 - Prob. 2CQCh. 10 - Two identical uniform 30 cm bricks are placed one...Ch. 10 - (a) If the forces on an object balance, do the...Ch. 10 - (a) Can you change the location of your bodys...Ch. 10 - Serious bicyclists say that if you reduce the...Ch. 10 - Prob. 7CQCh. 10 - In terms of torques, discuss the action of a claw...Ch. 10 - Why is a tapered water glass with a narrow base...Ch. 10 - True or false? In picking an axis about which to...
Ch. 10 - Global warming. As the earths climate continues to...Ch. 10 - If two spinning objects have the same angular...Ch. 10 - You are designing a wheel that must have a fixed...Ch. 10 - Prob. 2MCPCh. 10 - A student is sitting on a frictionless rotating...Ch. 10 - If the torques on an object balance, then it...Ch. 10 - If the forces on an object balance, then it...Ch. 10 - Prob. 6MCPCh. 10 - A person pushes vertically downward with force P...Ch. 10 - String is wrapped around the outer rim of a solid...Ch. 10 - A ball of mass 0.20 kg is whirled in a horizontal...Ch. 10 - A heavy solid disk rotating freely and slowed only...Ch. 10 - A uniform metal meterstick is balanced as shown in...Ch. 10 - Prob. 1PCh. 10 - Calculate the net torque about point O for the two...Ch. 10 - Three forces are applied to a wheel of radius...Ch. 10 - A 4 N and a 10 N force act on an object. The...Ch. 10 - A square metal plate 0.180 m on each side is...Ch. 10 - A cord is wrapped around the rim of a wheel 0.250...Ch. 10 - A certain type of propeller blade can be modeled...Ch. 10 - A 750 g grinding wheel 25.0 cm in diameter is in...Ch. 10 - A grindstone in the shape of a solid disk with...Ch. 10 - A solid, uniform cylinder with mass 8.00 kg and...Ch. 10 - A 2.00 kg stone is tied to a thin, light wire...Ch. 10 - A light rope is wrapped several times around a...Ch. 10 - A thin, light string is wrapped around the rim of...Ch. 10 - 14. A uniform, 8.40-kg, spherical shell 50.0 cm in...Ch. 10 - A hollow spherical shell with mass 2.00 kg rolls...Ch. 10 - A solid disk of radius 8.50 cm and mass 1.25 kg,...Ch. 10 - What is the power output in horsepower of an...Ch. 10 - A solid uniform sphere of mass 5 kg and radius 0.1...Ch. 10 - A playground merry-go-round has a radius of 4.40 m...Ch. 10 - The flywheel of a motor has a mass of 300.0 kg and...Ch. 10 - Calculate the angular momentum and kinetic energy...Ch. 10 - (a) Calculate the magnitude of the angular...Ch. 10 - A small 0.300 kg bird is flying horizontally at...Ch. 10 - A. small 4.0 kg brick is released from rest 2.5 m...Ch. 10 - The London Eye is the tallest Ferris wheel in...Ch. 10 - A certain drawbridge can be modeled as a uniform...Ch. 10 - On an old-fashioned rotating piano stool, a woman...Ch. 10 - The spinning figure skater. The outstretched hands...Ch. 10 - A small block on a frictionless horizontal surface...Ch. 10 - A uniform 2 kg solid disk of radius R 0.4 m is...Ch. 10 - A diver comes off a board with arms straight up...Ch. 10 - A large turntable rotates about a fixed vertical...Ch. 10 - A large wooden turntable in the shape of a flat...Ch. 10 - Which of the objects shown in Figure 10.55 are in...Ch. 10 - (a) In each of the objects in Figure 10.56, what...Ch. 10 - Prob. 36PCh. 10 - Prob. 37PCh. 10 - Prob. 38PCh. 10 - Prob. 39PCh. 10 - Prob. 40PCh. 10 - The horizontal beam in Figure 10.60 weighs 150 N,...Ch. 10 - The boom in Figure 10.61 weighs 2600 N and is...Ch. 10 - A uniform ladder 7.0 m long weighing 450 N rests...Ch. 10 - A 9.0 m uniform beam is hinged to a vertical wall...Ch. 10 - A uniform beam 4.0 m long and weighing 2500 N...Ch. 10 - A diving board 3.00 m long is supported at a point...Ch. 10 - Two people carry a heavy electric motor by placing...Ch. 10 - Pumping iron. A 72.0 kg weightlifter is doing arm...Ch. 10 - The deltoid muscle. The deltoid muscle is the main...Ch. 10 - The rotor (flywheel) of a toy gyroscope has a mass...Ch. 10 - For each of the following rotating objects,...Ch. 10 - Prob. 52GPCh. 10 - A good workout. You are doing exercises on a...Ch. 10 - Prior to being placed in its hole, a 5700 N,...Ch. 10 - Prob. 55GPCh. 10 - One end of a 1.2-m-long beam is hinged to a...Ch. 10 - The farmyard gate. A gate 4.00 m wide and 2.00 m...Ch. 10 - 58. Atwoods machine. Figure 10.72 illustrates an...Ch. 10 - Prob. 59GPCh. 10 - The forces on the foot. A 750 N athlete standing...Ch. 10 - A uniform solid cylinder of mass M is supported on...Ch. 10 - Prob. 62GPCh. 10 - You are trying to raise a bicycle wheel of mass m...Ch. 10 - An experimental bicycle wheel is placed on a test...Ch. 10 - Prob. 65GPCh. 10 - Disks A and B are mounted on shaft SS and may be...Ch. 10 - One end of a thin, uniform rod is connected to a...Ch. 10 - A uniform, 7.5-m-long beam weighing 9000 N is...Ch. 10 - Human moment of inertia. The moment of inertia of...Ch. 10 - While the turntable is being accelerated, the...Ch. 10 - A doubling of the torque produces a greater...Ch. 10 - If the bodys center of mass were not placed on the...Ch. 10 - Torques and tug-of-war. In a study of the...Ch. 10 - If the competitor leans slightly farther back...Ch. 10 - Torques and tug-of-war. In a study of the...
Additional Science Textbook Solutions
Find more solutions based on key concepts
17. A 10,000 kg railroad car is rolling at 2.00 m/s when a 4000 kg load of gravel is suddenly dropped in. What ...
College Physics: A Strategic Approach (3rd Edition)
Q1. Which substance is being oxidized in the reaction?
a.
b.
c.
d. none of the above
Introductory Chemistry (6th Edition)
5. The diploid number of the hypothetical animal Geneticus introductus is 2n = 36. Each diploid nucleus contain...
Genetic Analysis: An Integrated Approach (3rd Edition)
The pHactivity profile for glucose-6-phosphate isomerase indicates the participation of a group with a pKa = 6....
Organic Chemistry (8th Edition)
10.71 Identify each of the following as an acid or a base: (10.1)
H2SO4
RbOH
Ca(OH)2
HI
...
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Why is petroleum jelly used in the hanging-drop procedure?
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Section 11.5 The Motion of Gyroscopes and Tops A spacecraft is in empty space. It carries on board gyroscope with a moment of inertia of Ig = 20.0 kgm2 about the axis of the gyroscope. The moment of inertia of the spacecraft around the same axis is Is = 5.00 X 105 kgm2. Neither the spacecraft nor the gyroscope is originally rotating. The gyroscope can be powered up in a negligible period of time to an angular speed of 100 rad/s. If the orientation of the spacecraft is to be changed by 30.0, for what time interval should the gyroscope be operated?arrow_forwardA student sits on a freely rotating stool holding two dumbbells, each of mass 3.00 kg (Fig. P10.56). When his arms are extended horizontally (Fig. P10.56a), the dumbbells are 1.00 m from the axis of rotation and the student rotates with an angular speed of 0.750 rad/s. The moment of inertia of the student plus stool is 3.00 kg m2 and is assumed to be constant. The student pulls the dumbbells inward horizontally to a position 0.300 m from the rotation axis (Fig. P10.56b). (a) Find the new angular speed of the student. (b) Find the kinetic energy of the rotating system before and after he pulls the dumbbells inward. Figure P10.56arrow_forwardCalculate the moment of inertia of a skater given the following information. (a) The 60.0-kg skater is approximated as a cylinder that has a 0.110-m radius. b) The skater with arms extended is approximated by a cylinder that is 52.5 kg, has a 0.110-m radius, and has two 0.900-m-long arms which are 3.75 kg each and extend straight out from the cylinder like rods rotated about their ends.arrow_forward
- If the torque acting on a particle about an axis through a certain origin is zero, what can you say about its angular momentum about that axis?arrow_forwardThe velocity of a particle of mass m = 2.00 kg is given by v= 5.10 + 2.40 m /s. What is the angular momentumof the particle around the origin when it is located atr= 8.60 3.70 m?arrow_forwardA uniform disk of mass m = 10.0 kg and radius r = 34.0 cm mounted on a frictionlessaxle through its center, and initially at rest, isacted upon by two tangential forces of equalmagnitude F, acting on opposite sides of itsrim until a point on the rim experiences acentripetal acceleration of 4.00 m/s2 (Fig.P13.73). a. What is the angular momentumof the disk at this time? b. If F = 2.00 N, howlong do the forces have to be applied to thedisk to achieve this centripetal acceleration? FIGURE P13.73arrow_forward
- A thin rod of length 2.65 m and mass 13.7 kg is rotated at anangular speed of 3.89 rad/s around an axis perpendicular to therod and through its center of mass. Find the magnitude of therods angular momentum.arrow_forwardFigure OQ10.6 shows a system of four particles joined by light, rigid rods. Assume a = b and M is larger than m. About which of the coordinate axes does the system have (i) the smallest and (ii) the largest moment of inertia? (a) the x axis (b) the y axis (c) the z axis, (d) The moment of inertia is the same small value for two axes, (e) The moment of inertia is the same for all three axes.arrow_forwardThe oldest artificial satellite still in orbit is Vanguard I, launched March 3, 1958. It mass is 1.60 kg. Neglecting atmospheric drag, the satellite would still be in its initial orbit, with a minimum distance from the center of Earth of 7.02 Mm and a speed at this perigee point of 8.23 km/s. For this orbit, find (a) the total energy of the satelliteEarth system and (b) the magnitude of the angular momentum of the satellite. (c) At apogee, find the satellites speed and its distance from the center of the Earth. (d) Find the semimajor axis of its orbit. (e) Determine its period.arrow_forward
- Two astronauts (Fig. P10.67), each having a mass M, are connected by a rope of length d having negligible mass. They are isolated in space, orbiting their center of mass at speeds v. Treating the astronauts as particles, calculate (a) the magnitude of the angular momentum of the two-astronaut system and (b) the rotational energy of the system. By pulling on the rope, one of the astronauts shortens the distance between them to d/2. (c) What is the new angular momentum of the system? (d) What are the astronauts new speeds? (e) What is the new rotational energy of the system? (f) How much chemical potential energy in the body of the astronaut was converted to mechanical energy in the system when he shortened the rope? Figure P10.67 Problems 67 and 68.arrow_forwardA horizontal disk with moment of inertia I1 rotates with angular speed 1 about a vertical frictionless axle. A second horizontal disk having moment of inertia I2 drops onto the first, initially not rotating but sharing the same axis as the first disk. Because their surfaces are rough, the two disks eventually reach the same angular speed . The ratio /l is equal to (a) I1/I2 (b) I2/I1 (c) I1/( I1 + I2) (d) I2/( I1 + I2)arrow_forwardA buzzard (m = 9.29 kg) is flying in circular motion with aspeed of 8.44 m/s while viewing its meal below. If the radius ofthe buzzards circular motion is 8.00 m, what is the angularmomentum of the buzzardaround the center of its motion?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Moment of Inertia; Author: Physics with Professor Matt Anderson;https://www.youtube.com/watch?v=ZrGhUTeIlWs;License: Standard Youtube License