Calculus (MindTap Course List)
8th Edition
ISBN: 9781285740621
Author: James Stewart
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 9.6, Problem 7E
7–8 Graphs of populations of two species are shown. Use them to sketch the corresponding phase trajectory.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The longitude, rt of an air plane is affected by a random component e, due to the
wind effect and its speed t
It = -1 + 20t-1 + 6t.
The speed of the plane is affected by a constant global linear trend, ß = B₁-1 = 3, and varies
randomly due to weather conditions,
v₁ = V₁-1 + B₁-1+w₂.
In the above equations, is assumed to be white Gaussian noise with zero mean and o = 3.
Similarly w is assumed to be white Gaussian noise with zero mean and 2,=0.5. A GPS transmitter
mounted on the plane sends a noisy measurement to a receiver about its position,
X₁ = 0.5xt + nt,
where n, is assumed to be white Gaussian noise with zero mean and o2 = 2.
(a) Using the following definition for the state vector, 0t.
0₁
It + ve
B₂
write the motion of the plane in state space form. Note: You need to provide the exact form
of the h, G and W matrices.
(b) Evaluate the initial estimate for the state vector 03-
Environmental conditions can affect the growth of coral. To study this, a researcher examined a species of coral that is found in
the Caribbean Sea and the Gulf of Mexico. At 12 localities, he determined the average annual calcification rate of coral over a
period of several years and the average annual maximum sea surface temperature during the same period. Calcification rate
affects the growth of coral, with higher rates corresponding to greater growth. The table contains data for these 12 localities.
Maximum sea surface temperature (°C)
and calcification rate (g cm² yr¯¹)
Maximum Sea
Surface
Temperature
29.4
29.4
29.4
29.6
29.1
28.7
Calcification
Rate
1.48
1.53
1.52
1.48
1.31
1.25
Maximum Sea
Surface
Temperature
29.7
29.5
29.4
29.0
29.0
29.0
Calcification
Rate
1.63
1.53
1.46
1.24
1.29
1.12
To access the complete data set, click the link for your preferred software format:
Excel Minitab JMP SPSS TI R Mac-TXT PC-TXT CSV CrunchIt!
The residuals for average annual maximum sea surface…
Consider the following model to grow simple networks. At time t = 1 we start with a
complete network with no = 6 nodes. At each time step t > 1 a new node is added to
the network. The node arrives together with m = 2 new links, which are connected to
m = 2 different nodes already present in the network. The probability II, that a new
link is connected to node i is:
N(t-1)
II¿
=
ki - 1
Ꮓ
with Z=(k-1)
j=1
where ki is the degree of node i, and N(t - 1) is the number of nodes in the network at
timet - 1.
Chapter 9 Solutions
Calculus (MindTap Course List)
Ch. 9.1 - Show that y=23ex+e2x is a solution of the...Ch. 9.1 - Verify that y=tcostt is a solution of the...Ch. 9.1 - a For what values of r does the function y=erx...Ch. 9.1 - Prob. 4ECh. 9.1 - Which of the following functions are solutions of...Ch. 9.1 - a Show that every member of the family of...Ch. 9.1 - a What can you say about a solution of the...Ch. 9.1 - a What can you say about the graph of a solution...Ch. 9.1 - Prob. 9ECh. 9.1 - The Fitzhugh-Nagumo model for the electrical...
Ch. 9.1 - Explain why the functions with the given graphs...Ch. 9.1 - The function with the given graph is a solution of...Ch. 9.1 - Match the differential equations with the solution...Ch. 9.1 - Suppose you have just poured a cup of freshly...Ch. 9.1 - Prob. 15ECh. 9.1 - Von Bertalanffys equation states that the rate of...Ch. 9.1 - Differential equations have been used extensively...Ch. 9.2 - A direction field for the differential equation...Ch. 9.2 - A direction field for the differential equation...Ch. 9.2 - Prob. 3ECh. 9.2 - Prob. 4ECh. 9.2 - 36 Match the differential equation with its...Ch. 9.2 - 36 Match the differential equation with its...Ch. 9.2 - Prob. 7ECh. 9.2 - Prob. 8ECh. 9.2 - Prob. 9ECh. 9.2 - 910 Sketch a direction field for the differential...Ch. 9.2 - Prob. 11ECh. 9.2 - Prob. 12ECh. 9.2 - Prob. 13ECh. 9.2 - Prob. 14ECh. 9.2 - Prob. 15ECh. 9.2 - Prob. 16ECh. 9.2 - Use a computer algebra system to draw a direction...Ch. 9.2 - Make a rough sketch of a direction field for the...Ch. 9.2 - a Use Eulers method with each of the following...Ch. 9.2 - A direction field for a differential equation is...Ch. 9.2 - Prob. 21ECh. 9.2 - Prob. 22ECh. 9.2 - Use Eulers method with step size 0.1 to estimate...Ch. 9.2 - Prob. 24ECh. 9.2 - a Program a calculator or computer to use Eulers...Ch. 9.2 - a Program your computer algebra system, using...Ch. 9.2 - The figure shows a circuit containing an...Ch. 9.2 - In Exercise 9.1.14 we considered a 95C cup of...Ch. 9.3 - 110 Solve the differential equation. dydx=3x2y2Ch. 9.3 - Prob. 2ECh. 9.3 - Prob. 3ECh. 9.3 - 110 Solve the differential equation. y+xey=0Ch. 9.3 - Prob. 5ECh. 9.3 - Prob. 6ECh. 9.3 - Prob. 7ECh. 9.3 - Prob. 8ECh. 9.3 - Prob. 9ECh. 9.3 - Prob. 10ECh. 9.3 - 1118 Find the solution of the differential...Ch. 9.3 - Prob. 12ECh. 9.3 - Prob. 13ECh. 9.3 - Prob. 14ECh. 9.3 - 1118 Find the solution of the differential...Ch. 9.3 - Prob. 16ECh. 9.3 - Prob. 17ECh. 9.3 - Prob. 18ECh. 9.3 - Find an equation of the curve that passes through...Ch. 9.3 - Find the function f such that...Ch. 9.3 - Prob. 21ECh. 9.3 - Prob. 22ECh. 9.3 - Prob. 23ECh. 9.3 - Prob. 24ECh. 9.3 - Prob. 25ECh. 9.3 - Prob. 26ECh. 9.3 - a Use a computer algebra system to draw a...Ch. 9.3 - 2728 a Use a computer algebra system to draw a...Ch. 9.3 - 2932 Find the orthogonal trajectories of the...Ch. 9.3 - 2932 Find the orthogonal trajectories of the...Ch. 9.3 - 2932 Find the orthogonal trajectories of the...Ch. 9.3 - 2932 Find the orthogonal trajectories of the...Ch. 9.3 - 3335 An integral equation is an equation that...Ch. 9.3 - 3335 An integral equation is an equation that...Ch. 9.3 - Prob. 35ECh. 9.3 - Find a function f such that f(3)=2 and...Ch. 9.3 - Prob. 37ECh. 9.3 - In Exercise 9.2.28 we discussed a differential...Ch. 9.3 - Prob. 39ECh. 9.3 - In an elementary chemical reaction, single...Ch. 9.3 - In contrast to the situation of Exercise 40,...Ch. 9.3 - Prob. 42ECh. 9.3 - Prob. 43ECh. 9.3 - A certain small country has 10 billion in paper...Ch. 9.3 - Prob. 45ECh. 9.3 - Prob. 46ECh. 9.3 - A vat with 500 gallons of beer contains 4 alcohol...Ch. 9.3 - A tank contains 1000 L of pure water. Brine that...Ch. 9.3 - Prob. 49ECh. 9.3 - An object of mass m is moving horizontally through...Ch. 9.3 - Prob. 51ECh. 9.3 - Prob. 52ECh. 9.3 - Let A(t) be the area of a tissue culture at time t...Ch. 9.3 - Prob. 54ECh. 9.4 - 12 A population grows according to the given...Ch. 9.4 - 1-2 A population grows according to the given...Ch. 9.4 - Suppose that a population develops according to...Ch. 9.4 - Suppose that a population grows according to a...Ch. 9.4 - The Pacific halibut fishery has been modeled by...Ch. 9.4 - Suppose a population P(t) satisfies...Ch. 9.4 - Suppose a population grows according to a logistic...Ch. 9.4 - The table gives the number of yeast cells in a new...Ch. 9.4 - Prob. 9ECh. 9.4 - Prob. 10ECh. 9.4 - One model for the spread of a rumor is that the...Ch. 9.4 - Biologists stocked a lake with 400 fish and...Ch. 9.4 - Prob. 13ECh. 9.4 - Prob. 14ECh. 9.4 - Prob. 15ECh. 9.4 - Prob. 16ECh. 9.4 - Consider a population P=P(t) with constant...Ch. 9.4 - Let c be a positive number. A differential...Ch. 9.4 - Lets modify the logistic differential equation of...Ch. 9.4 - Consider the differential equation...Ch. 9.4 - There is considerable evidence to support the...Ch. 9.4 - Prob. 22ECh. 9.4 - In a seasonal-growth model, a periodic function of...Ch. 9.4 - Prob. 24ECh. 9.4 - Prob. 25ECh. 9.5 - 14 Determine whether the differential equation is...Ch. 9.5 - Prob. 2ECh. 9.5 - Prob. 3ECh. 9.5 - Prob. 4ECh. 9.5 - 514 Solve the differential equation. y+y=1Ch. 9.5 - 514 Solve the differential equation. yy=exCh. 9.5 - 514 Solve the differential equation. y=xyCh. 9.5 - 514 Solve the differential equation....Ch. 9.5 - Prob. 9ECh. 9.5 - Prob. 10ECh. 9.5 - Prob. 11ECh. 9.5 - Prob. 12ECh. 9.5 - Prob. 13ECh. 9.5 - Prob. 14ECh. 9.5 - Prob. 15ECh. 9.5 - Prob. 16ECh. 9.5 - Prob. 17ECh. 9.5 - Prob. 18ECh. 9.5 - 1520 Solve the initial-value problem....Ch. 9.5 - Prob. 20ECh. 9.5 - Prob. 21ECh. 9.5 - Prob. 22ECh. 9.5 - A Bernoulli differential equation named after...Ch. 9.5 - 2425 Use the method of Exercise 23 to solve the...Ch. 9.5 - Prob. 25ECh. 9.5 - Prob. 26ECh. 9.5 - Prob. 27ECh. 9.5 - Prob. 28ECh. 9.5 - Prob. 29ECh. 9.5 - Prob. 30ECh. 9.5 - Prob. 31ECh. 9.5 - Prob. 32ECh. 9.5 - In Section 9.3 we looked at mixing problems in...Ch. 9.5 - Prob. 34ECh. 9.5 - An object with mass m is dropped from rest and we...Ch. 9.5 - If we ignore air resistance, we can conclude that...Ch. 9.5 - Prob. 37ECh. 9.5 - To account for seasonal variation in the logistic...Ch. 9.6 - For each predator-prey system, determine which of...Ch. 9.6 - Each system of differential equations is a model...Ch. 9.6 - Prob. 3ECh. 9.6 - Prob. 4ECh. 9.6 - 56 A phase trajectory is shown for populations of...Ch. 9.6 - 56 A phase trajectory is shown for populations of...Ch. 9.6 - 78 Graphs of populations of two species are shown....Ch. 9.6 - Prob. 8ECh. 9.6 - Prob. 9ECh. 9.6 - Populations of aphids and ladybugs are modeled by...Ch. 9.6 - In Example 1 we used Lotka-Volterra equations to...Ch. 9.6 - In Exercise 10 we modeled populations of aphids...Ch. 9.R - Prob. 1CCCh. 9.R - Prob. 2CCCh. 9.R - Prob. 3CCCh. 9.R - Prob. 4CCCh. 9.R - Prob. 5CCCh. 9.R - Prob. 6CCCh. 9.R - Prob. 7CCCh. 9.R - Prob. 8CCCh. 9.R - a Write Lotka-Volterra equations to model...Ch. 9.R - Prob. 1TFQCh. 9.R - Prob. 2TFQCh. 9.R - Prob. 3TFQCh. 9.R - Determine whether the statement is true or false....Ch. 9.R - Prob. 5TFQCh. 9.R - Determine whether the statement is true or false....Ch. 9.R - Prob. 7TFQCh. 9.R - Prob. 1ECh. 9.R - a Sketch a direction field for the differential...Ch. 9.R - a A direction field for the differential equation...Ch. 9.R - Prob. 4ECh. 9.R - Prob. 5ECh. 9.R - Prob. 6ECh. 9.R - 58 Solve the differential equation. 2yey2y=2x+3xCh. 9.R - 58 Solve the differential equation. x2yy=2x3e1/xCh. 9.R - 911 Solve the initial-value problem....Ch. 9.R - 911 Solve the initial-value problem....Ch. 9.R - Prob. 11ECh. 9.R - Prob. 12ECh. 9.R - 1314 Find the orthogonal trajectories of the...Ch. 9.R - Prob. 14ECh. 9.R - Prob. 15ECh. 9.R - a The population of the world was 6.1 billion in...Ch. 9.R - Prob. 17ECh. 9.R - Prob. 18ECh. 9.R - One model for the spread of an epidemic is that...Ch. 9.R - Prob. 20ECh. 9.R - Prob. 21ECh. 9.R - Populations of birds and insects are modeled by...Ch. 9.R - Prob. 23ECh. 9.R - Prob. 24ECh. 9.P - Find all functions f such that f is continuous and...Ch. 9.P - Prob. 2PCh. 9.P - Prob. 3PCh. 9.P - Find all functions f that satisfy the equation...Ch. 9.P - Prob. 5PCh. 9.P - A subtangent is a portion of the x-axis that lies...Ch. 9.P - A peach pie is taken out of the oven at 5:00 PM....Ch. 9.P - Snow began to fall during the morning of February...Ch. 9.P - A dog sees a rabbit running in a straight line...Ch. 9.P - a Suppose that the dog in Problem 9 runs twice as...Ch. 9.P - A planning engineer for a new alum plant must...Ch. 9.P - Prob. 12PCh. 9.P - Prob. 13PCh. 9.P - Prob. 14PCh. 9.P - Prob. 15PCh. 9.P - a An outfielder fields a baseball 280 ft away from...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Draw the phase portraits of the following linear systems and justify the choice of the direction of trajectories. (4.1) * = ( 13 1³ ) *. X, -3 (4.2) = *-(34)x X.arrow_forwardThe output of a solar panel (photovoltaic) system depends on its size. A manufacturer states that the average daily production of its 1.5 kW system is 6.6 kilowatt hours (kWh) for Perth conditions. A consumer group monitored this 1.5 kW system in 20 different Perth homes and measured the average daily production by the systems in these homes over a one month period during October. The data is provided here. kWh 6.2, 5.8, 5.9, 6.1, 6.4, 6.3, 6.9, 5.5, 7.4, 6.7, 6.3, 6.2, 7.1, 6.8, 5.9, 5.4, 7.2, 6.7, 5.8, 6.9 1. Analyse the consumer group’s data to test if the manufacturer’s claim of an average of 6.6 kWh per day is reasonable. State appropriate hypotheses, assumptions and decision rule at α = 0.10. What conclusions would you report to the consumer group? (Hint: You will need to find Descriptive Statistics first.) 2. If 48 homes in the central Australian city of Alice Springs had this system installed and similar data was collected, in order to assess whether average daily production in…arrow_forward15) The intercept is 0, the autoregressive coefficient is 0.2 and the moving average coefficient is 0.5 in an ARIMA(1,1,1) model. What is the one-step ahead forecast if the shock for the current period is -2 and the current and one-period lagged values of the forecast variable are 110 and 105?arrow_forward
- 4. (Section 3.10, problem 8) Determine whether the motion determined by the ODE ü + 2dů + du = 0, d > 0 is underdamped, critically damped or overdamped. Write down the solution of the ODE.arrow_forwardSection 5.6: Justification of Addition in Quadrature 5.29. * The measurements of a certain quantity x are distributed according to the Gauss function Gx(x) with X = 10 and o = 2. Sketch this distribution and the distributions for q = x + 5 and for q' = x/ 2, all on the same graph.arrow_forwardThe Different Effects of Excitation and Inhibition in Neural Circuit (series #1)| Neural circuit consists of polysynaptic neural network, combination of excitatory and inhibitory neurons. This exercise helps to understand the effects of excitation and inhibition in the nervous system. Our body is dynamically active under physiology condition. As a result, there are basal levels of activity such as 70 beats/min of heart rate at resting condition. Either increased or decreased activities are relative to the baseline. The effects of excitation are easily understood---one neuron activates another neuron. However, when inhibition is introduced into circuits, analysis become more complicated. In fact, the numbers of inhibitory neurons in the circuit determine the final effect of the circuit, which can be excitation or inhibition, on the target organ or area. We assume all excitatory and inhibitory neurons are glutamate and GABA neurons, respectively, in this practice sheet. The glutamate and…arrow_forward
- HIV population model: At population level, the transmission dynamics of HIV can be viewed as an SI model as everybody, at least the serually active individuals, is susceptible to HIV, and infectives HIV positive patients remain infective and infectious forever. The model become interesting and more realistic if we incorporate a third class of latently infected patients E. In this category, the patients are infected but no yet infectious and they are either in the acute or the asymptomatic phase of HIV progression. This gives rise to an SEI epidemic model that can be modeled by the following system dS ES = A-B- N ES – kE – µE N dt dE - dt dI kE - μl dt where A is a constant recruitment rate into the susceptible population, B is the contact rate, u is the natural death rate, k is the rate at which latently infective individual progress to the infective class. Determine Ro for this modelarrow_forwardWhat is the phase-line diagram of the function dP/dt = P3- 3P2 - 28Parrow_forwardCompute 2²e-2ª dx.arrow_forward
- Given that alpha, beta, r and mu > 0. a) Find parameters for alpha, beta, r and mu so that the disease dies out. b) Using a phase line, we see that the model has a positive equilibrium. What is that equilibrium?arrow_forwardnot use ai pleasearrow_forwardCan you make Two sprites, Balloon 1-a and Balloon 1-b are continuously gliding randomly around the entire stage without pausing? Each flight segment lasts 1.5 sec. The initial Balloon 1-b’s movement is delayed by 0.75 sec. When Balloon 1-a’s flight segment ends in the southeast quadrant of the stage or Balloon 1-b’s flight segment ends in the northwest quadrant, the other balloon should visibly change its color effect. Can you make this in Scratch and show me how the steps you did to do it. (Thank you very much).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning
Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning
Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON
Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman
Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning
What is a Linear Equation in One Variable?; Author: Don't Memorise;https://www.youtube.com/watch?v=lDOYdBgtnjY;License: Standard YouTube License, CC-BY
Linear Equation | Solving Linear Equations | What is Linear Equation in one variable ?; Author: Najam Academy;https://www.youtube.com/watch?v=tHm3X_Ta_iE;License: Standard YouTube License, CC-BY