Theory and Design for Mechanical Measurements
Theory and Design for Mechanical Measurements
6th Edition
ISBN: 9781118881279
Author: Richard S. Figliola, Donald E. Beasley
Publisher: WILEY
bartleby

Videos

Textbook Question
Book Icon
Chapter 9, Problem 9.43P

For the thermal anemometer in Figures 9.31 and 9.32, determine the decade resistance setting
required to set a platinum sensor at 40 °C above ambient if the sensor ambient resistance is 110 Q and /?, = 500 Si and = 500 Q, a = 0.00395 °C"1.

Blurred answer
Students have asked these similar questions
The transducer specified in Table 1.1 is chosen to measurea nominal pressure of 500 cm H2O. The ambient temperature is expected to vary between 18 ∘C and 25 ∘C duringtests. Estimate the possible range (magnitude) of each listedelemental error affecting the measured pressure refering to the solution provided online, Sensitivity error(eK) = (±0.0025)(500 cm H2O)= ± 0.75 cm H2O = ± 0.00375 V how do you get 0.75?? shoud it not be 1.25?   according the answer, for sensitivity
3. Calculate a circular pressure tank volume and its uncertainty if the diameter, D, is 1.5 m and the length, L, is 3 m and the measurement are given with bilateral tolerance of±l cm. 2 2 ле si + Sy = tolerance in diameter tolerance in length where Sp= and Si = 3 3 D2 andV = ar²L=n-L 4
The transducer specified in Table 1.1 is chosen to measurea nominal pressure of 500 cm H2O. The ambient temperature is expected to vary between 18 ∘C and 25 ∘C duringtests. Estimate the possible range (magnitude) of each listedelemental error affecting the measured pressure.   How do I calculate the sensitivity error?  The solution that was given: Sensitivity error(eK) = (±0.0025)(500 cm H2O)= ± 0.75 cm H2O = ± 0.00375 V   My Question is, how do you obtain 0.75 since 0.0025 x 500 gives 1.25!   please help. thanks

Chapter 9 Solutions

Theory and Design for Mechanical Measurements

Ch. 9 - An air pressure over the 200- to 400-N/m2 range is...Ch. 9 - Calculate the design-stage uncertainty in...Ch. 9 - The pressure drop across a valve through which air...Ch. 9 - Estimate the sensitivity (pF/mm) of a capacitance...Ch. 9 - A diaphragm pressure transducer is calibrated...Ch. 9 - A diaphragm pressure transducer is coupled with a...Ch. 9 - Prob. 9.17PCh. 9 - A 2.0 mm thick circular steel diaphragm (Em = 200...Ch. 9 - Estimate the differential pressure limit for a...Ch. 9 - The pressure fluctuations in a pipe filled with...Ch. 9 - What is the sensitivity of a pitot-static tube...Ch. 9 - A pitot-static pressure probe inserted within a...Ch. 9 - A tall pitot-static tube is mounted through and...Ch. 9 - The pressure transmission line response equation...Ch. 9 - Prob. 9.26PCh. 9 - Prob. 9.28PCh. 9 - Compare the inertance of water in a 0.2-m-long...Ch. 9 - The output from a resting healthy human adult...Ch. 9 - Prob. 9.31PCh. 9 - A pressure drop of 213 Pa is measured between two...Ch. 9 - Wall pressure taps (e.g., Figs. 9.19 and 9.21) are...Ch. 9 - Prob. 9.34PCh. 9 - Prob. 9.35PCh. 9 - Determine the resolution of a manometer required...Ch. 9 - A long cylinder is placed into a wind tunnel and...Ch. 9 - Prob. 9.38PCh. 9 - Prob. 9.39PCh. 9 - What is the sound pressure in pascals if the...Ch. 9 - A 6-mm-diameter pitot-static tube is used as a...Ch. 9 - For the thermal anemometer in Figures 9.31 and...Ch. 9 - Determine the static sensitivity of the output...Ch. 9 - A laser Doppler anemometer setup in a dual-beam...Ch. 9 - A set of 5,000 measurements of velocity at a point...Ch. 9 - Aircraft airspeed is measured using a pitot...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license