Principles of Foundation Engineering (MindTap Course List)
9th Edition
ISBN: 9781337705028
Author: Braja M. Das, Nagaratnam Sivakugan
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 9, Problem 9.12P
To determine
Calculate the settlement of a 2 m wide square foundation.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
H.W 2.pdf >
H.Q 6
A flexible foundation measuring 1.5 m x 3 m is supported by a
saturated clay. Given: Dr = 1.2 m, H = 3 m, Es (clay)= 600 kN/m2, and qo
= 150 kN/m?. Determine the average elastic settlement of the
foundation.
H.O 7
Figure 7.3 shows a foundation of 10 ft x 6.25 ft resting on a sand
deposit. The net load per unit area at the level of the foundation, qo, is
3000 Ib/ft?. For the sand, u, = 0.3, Es = 3200 Ib/in?, Df = 2.5 ft, and H
= 32 ft. Assume that the foundation is rigid and determine the elastic
settlement the foundation would undergo.
H.O 8
Determine the net ultimate bearing capacity of mat foundations with
the following characteristics:
c, = 2500 Ib/ft, = 0, B = 20 ft, L = 30 ft, D, = 6.2 ft
Foundation Engineering I
H.W 2
H.O 9
A 20-m-long concrete pile is shown in Figure below. Estimate the
ultimate point load Q, by
a. Meyerhof's method
b. Coyle and Castello's method
Concrete pile
460 mm x 460 mm
Loose sand
20m
y I86 ANi
Dee s
H.O 10
A concrete pile 20 m long…
A shallow foundation measuring 1.75 m x 1.75 m is to be constructed over a layer of
sand to support a net vertical load 400 kN. Given: D= 1 m; average No =12. The sand is
normally consolidated. Estimate the elastic settlement of the foundation. Using Modified
Meyerhof's method.
A continuous foundation is shown in Figure is to be constructed on a sand deposit. If the load
eccentricity is 0.2 m, determine the ultimate load, Qu, per unit length of the foundation. Use
Meyerhof's effective area method.
1.5.m
-2 m
Sand
$' = 40°
-0
y=16.5 kN/m³
Chapter 9 Solutions
Principles of Foundation Engineering (MindTap Course List)
Knowledge Booster
Similar questions
- Problem 1. A column foundation (Figure below) is 3 m × 2 m in plan. The load on the column, including the weight of the foundation is 4500 kN. Determin the average vertical stress increase 4 m beneath the corner of the foundation in the soil layer due to the foundation loading by: a) Boussinesq equations b) 2:1 method Given: Df = 1.5 m, Ø'= 25°, c'= 70 kN/m². 1.5 m 1 m 3m x 2m y = 17 kN/m³ Water level Ysat 19.5 kN/m³arrow_forwardQuestion attachedarrow_forward7.14 Refer to Figure 7.15. For a foundation on a layer of sand, given: B = 5 ft, L = 10 ft, d = 5 ft, B = 26.6°, e = 0.5 ft, and & = 10°. The Pressuremeter testing at the site pro- duced a mean Pressuremeter curve for which the pam) versus AR/R, points are as follow. AR/R. (1) P,(m) (lb/in.?) (2) 0.002 7.2 0.004 24.2 0.008 32.6 0.012 42.4 0.024 68.9 0.05 126.1 0.08 177.65 0.1 210.5 0.2 369.6 What should be the magnitude of Q, for a settlement (center) of 1 in.? Foundation BxL В Figure 7.15 Definition of parameters-B,arrow_forward
- 3decimal places on final answerarrow_forward|A rigid shallow foundation 1m x 1m in plan is shown in the following figure. Calculate the elastic settlement at the center and corner of the foundation. Ao = 200 kN/m2 1 m 1 m X 1 m E, (kN/m?) + 8000 Hy = 0.3 + 6000 3 10,000 Rock (m).arrow_forward8.4 A rectangular foundation is shown in Figure P8.2, given B=2m, L=4m q = 240 kN/m², H = 6m, and D; = 2 m. (a) Assuming E = 3800KN/m², calculate the average elastic settlement. Use Eq. (8.24). (b) If the clay is normally consolidated, calculate the consolidation settlement. Use Eq. (8.35) and y,t = 17.5 kN/m’, C, = 0.12, and e, = 1.1. %3D G.W.T. D,=2 m = 240 kN/m² Clay e. = .IO H= 6 m 1. Rock Figure P8.2 S,(average) = µ,M0 qB (v = 0.5) E (8.24) (8.35)arrow_forward
- Ignoring the given Es-data and considering that the supporting soil is clean, normally consolidated sand with the following available data:arrow_forwardProblem 2: A square foundation of B = 4 m applies a uniform pressure of 17.5 kN/m² to the underlaying ground. Determine the vertical stress increase using at a depth of 1m below the center using: a) 2:1 method b) m and n method. c) Stress isobars d) Newmark Methodarrow_forwardSubject: ( Geotechnical and foundation engineering )arrow_forward
- 8.4 A rectangular foundation is shown in Figure P8.2, given B= 2 m, L=4m q=240 kN/m², H=6m, and D; =2 m. (a) Assuming E = 3800KN/m², calculate the average elastic settlement. Use Eq. (8.24). (b) If the clay is normally consolidated, calculate the consolidation settlement. Use Eq. (8.35) and yat = 17.5 kN/m², C¸ = 0.12, and e, = 1.1.arrow_forward10.6arrow_forward4. For the stressed soil element shown. use the pole method and determine: 1) the major and minor principal stresses, 2) the normal and shear stresses on the plane oriented 0 to the horizontal. O is 12⁰. Gy = 50 kN/m² Tyx = 50 kN/m² 0 Txy = 50 kN/m² Ox= 150 kN/m²arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Fundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage Learning
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning