Fox and McDonald's Introduction to Fluid Mechanics
9th Edition
ISBN: 9781118912652
Author: Philip J. Pritchard, John W. Mitchell
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 9, Problem 24P
Using numerical results obtained by Blasius (Table 9.1, on the web), evaluate the vertical component of velocity in a laminar boundary layer on a flat plate. Plot υ/U versus y/δ for Rex = 105.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
calculate drag force
B) for the velocity profiles given below, state whether the boundary layer has separated or on the verge of
separation or will remain attached (
i) u/U=2(y/8) -(y/8)² ii) u/U=-2(y/8) +0.5(y/8)³
iii) u/U-1.5(y/8) +0.5(y/8)³
Q3: Find the displacement, momentum thickness and energy thickness for the velocity distribution in the
boundary layer: F
u/U=0.5(y/8) + 1.5(y/8)³
Q4: A) Find the velocity distribution and expression of the maximum velocity and shear stress for a flow
between two stationary plates. C
B) A laminar flow of oil between two horizontal fixed parallel plates with a maximum velocity 2 m/s and
100mm apart. Canulate the pressure gradient and shear stress. Take µ-2.4525 s/m².
Reference 12 contains inviscid theory calculations for the
upper and lower surface velocity distributions V(x) over an
airfoil, where x is the chordwise coordinate. A typical re-
sult for small angle of attack is as follows:
xlc
VIU„(upper)
VIU„(lower)
0.0
0.0
0.0
0.025
0.97
0.82
0.05
1.23
0.98
0.1
1.28
1.05
1.13
0.2
1.29
0.3
1.29
1.16
0.4
1.24
1.16
0.6
1.14
1.08
0.8
0.99
0.95
1.0
0.82
0.82
Use these data, plus Bernoulli's equation, to estimate
(a) the lift coefficient and (b) the angle of attack if the
airfoil is symmetric.
Chapter 9 Solutions
Fox and McDonald's Introduction to Fluid Mechanics
Ch. 9 - The roof of a minivan is approximated as a...Ch. 9 - A model of a river towboat is to be tested at 1:18...Ch. 9 - For flow over a smooth plate, what approximately...Ch. 9 - A model of a thin streamlined body is placed in a...Ch. 9 - A student is to design an experiment involving...Ch. 9 - A 1 m 2 m sheet of plywood is attached to the...Ch. 9 - The extent of the laminar boundary layer on the...Ch. 9 - Velocity profiles in laminar boundary layers often...Ch. 9 - An approximation for the velocity profile in a...Ch. 9 - Evaluate / for each of the laminar boundary-layer...
Ch. 9 - Evaluate the displacement thickness and the...Ch. 9 - Evaluate the displacement thickness and the...Ch. 9 - A fluid, with density = 1.5 slug/ft3, flows at U...Ch. 9 - Solve Problem 9.13 with the velocity profile at...Ch. 9 - Air flows in a horizontal cylindrical duct of...Ch. 9 - Evaluate the displacement thickness and the...Ch. 9 - Evaluate the displacement thickness and the...Ch. 9 - A laboratory wind tunnel has a test section 25 cm...Ch. 9 - Air flows in the entrance region of a square duct,...Ch. 9 - A flow of 68F air develops in a flat horizontal...Ch. 9 - A flow of air develops in a horizontal cylindrical...Ch. 9 - Using numerical results for the Blasius exact...Ch. 9 - Using numerical results obtained by Blasius (Table...Ch. 9 - Using numerical results obtained by Blasius (Table...Ch. 9 - A smooth flat plate 2.4 m long and 0.6 m wide is...Ch. 9 - Consider flow of air over a flat plate. On one...Ch. 9 - A thin flat plate, L = 9 in. long and b = 3 ft...Ch. 9 - For a laminar boundary layer on a flat plate,...Ch. 9 - Air at atmospheric pressure and 20C flows over...Ch. 9 - A thin flat plate is installed in a water tunnel...Ch. 9 - Assume laminar boundary-layer flow to estimate the...Ch. 9 - Assume laminar boundary-layer flow to estimate the...Ch. 9 - Assume laminar boundary-layer flow to estimate the...Ch. 9 - Prob. 34PCh. 9 - Water at 10C flows over a flat plate at a speed of...Ch. 9 - Use the momentum integral equation to derive...Ch. 9 - A smooth flat plate 1.6 ft long is immersed in 68F...Ch. 9 - Prob. 38PCh. 9 - A developing boundary layer of standard air on a...Ch. 9 - Assume the flow conditions given in Example 9.3....Ch. 9 - A flat-bottomed barge having a 150 ft 20 ft...Ch. 9 - European InterCity Express trains operate at...Ch. 9 - Grumman Corp. has proposed to build a magnetic...Ch. 9 - Repeat Problem 9.32, for an air flow at 80 ft/s,...Ch. 9 - The velocity profile in a turbulent boundary-layer...Ch. 9 - The U.S. Navy has built the Sea Shadow, which is a...Ch. 9 - The two rectangular smooth flat plates are to have...Ch. 9 - Standard air flows over a horizontal smooth flat...Ch. 9 - Air at standard conditions flows over a flat...Ch. 9 - A uniform flow of standard air at 60 m/s enters a...Ch. 9 - A laboratory wind tunnel has a flexible upper wall...Ch. 9 - Air flows in a cylindrical duct of diameter D = 6...Ch. 9 - Perform a cost-effectiveness analysis on a typical...Ch. 9 - Table 9.1 (on the web) shows the numerical results...Ch. 9 - A fluid flow enters the plane-wall diffuser that...Ch. 9 - For flow over a flat plate with zero pressure...Ch. 9 - A flat-bottomed barge, 80 ft long and 35 ft wide,...Ch. 9 - A towboat for river barges is tested in a towing...Ch. 9 - Plot the local friction coefficient cf, the...Ch. 9 - A smooth plate 3 m long and 0.9 m wide moves...Ch. 9 - Resistance of a barge is to be determined from...Ch. 9 - A nuclear submarine cruises fully submerged at 27...Ch. 9 - You are asked by your college crew to estimate the...Ch. 9 - The drag coefficient of a circular disk when...Ch. 9 - A steel sphere of 0.25 in. diameter has a velocity...Ch. 9 - A steel sphere (SG = 7.8) of 13 mm diameter falls...Ch. 9 - A sheet of plastic material 0.5 in. thick, with...Ch. 9 - As part of the 1976 bicentennial celebration, an...Ch. 9 - What constant speed will be attained by a lead (SG...Ch. 9 - Assuming a critical Reynolds number of 0.1,...Ch. 9 - Glass spheres of 0.1 in. diameter fall at constant...Ch. 9 - A rotary mixer is constructed from two circular...Ch. 9 - Calculate the drag of a smooth sphere of 0.3 m...Ch. 9 - Calculate the drag of a smooth sphere of 0.5 m...Ch. 9 - A cylindrical chimney 0.9 m in diameter and 22.5 m...Ch. 9 - The resistance to motion of a good bicycle on...Ch. 9 - Ballistic data obtained on a firing range show...Ch. 9 - A standard marine torpedo is 0.533 m in diameter...Ch. 9 - A large truck has an essentially boxlike body that...Ch. 9 - At a surprise party for a friend youve tied a...Ch. 9 - A 0.5-m-diameter hollow plastic sphere containing...Ch. 9 - A simple but effective anemometer to measure wind...Ch. 9 - The Willis Tower (formerly the Sears Tower) in...Ch. 9 - It is proposed to build a pyramidal building with...Ch. 9 - Calculate the drag forces on a 1/200 scale model...Ch. 9 - A circular disk is hung in an air stream from a...Ch. 9 - A vehicle is built to try for the land-speed...Ch. 9 - An F-4 aircraft is slowed after landing by dual...Ch. 9 - A tractor-trailer rig has frontal area A = 102 ft2...Ch. 9 - A 180hp sports car of frontal area 1.72 m2, with a...Ch. 9 - An object falls in air down a long vertical chute....Ch. 9 - Prob. 99PCh. 9 - A light plane tows an advertising banner over a...Ch. 9 - The antenna on a car is 10 mm in diameter and 1.8...Ch. 9 - Consider small oil droplets (SG = 0.85) rising in...Ch. 9 - Standard air is drawn into a low-speed wind...Ch. 9 - A small sphere with D = 6 mm is observed to fall...Ch. 9 - A tennis ball with a mass of 57 g and diameter of...Ch. 9 - A water tower consists of a 12-m-diameter sphere...Ch. 9 - A cast-iron 12-pounder cannonball rolls off the...Ch. 9 - A rectangular airfoil of 40 ft span and 6 ft chord...Ch. 9 - A rectangular airfoil of 9 m span and 1.8 m chord...Ch. 9 - Why is it possible to kick a football farther in a...Ch. 9 - If CL = 1.0 and CD = 0.05 for an airfoil, then...Ch. 9 - A wing model of 5 in. chord and 2.5 ft span is...Ch. 9 - A barge weighing 8820 kN that is 10 m wide, 30 m...Ch. 9 - A spherical sonar transducer with 15 in. diameter...Ch. 9 - While walking across campus one windy day, an...Ch. 9 - If the mean velocity adjacent to the top of a wing...Ch. 9 - The NACA 23015 airfoil is to move at 180 mph...Ch. 9 - A human-powered aircraft has a gross weight of 240...Ch. 9 - WiffleTM balls made from light plastic with...Ch. 9 - A model airfoil of chord 6 in. and span 30 in. is...Ch. 9 - An antique airplane carries 50 m of external guy...Ch. 9 - How do cab-mounted wind deflectors for...Ch. 9 - An airplane with an effective lift area of 25 m2...Ch. 9 - The U.S. Air Force F-16 fighter aircraft has wing...Ch. 9 - A light airplane, with mass M = 1000 kg, has a...Ch. 9 - A light airplane has 35-ft effective wingspan and...Ch. 9 - Assume the Boeing 727 aircraft has wings with NACA...Ch. 9 - Jim Halls Chaparral 2F sports-racing cars in the...Ch. 9 - Some cars come with a spoiler, a wing section...Ch. 9 - Roadside signs tend to oscillate in a twisting...Ch. 9 - Air moving over an automobile is accelerated to...Ch. 9 - A class demonstration showed that lift is present...Ch. 9 - Rotating cylinders were proposed as a means of...Ch. 9 - A baseball pitcher throws a ball at 80 mph. Home...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
Describe some design trade-offs between efficiency and safety in some language you know.
Concepts Of Programming Languages
17–1C A high-speed aircraft is cruising in still air. How does the temperature of air at the nose of the aircra...
Thermodynamics: An Engineering Approach
24. If we increase the temperature in a reactor by 90 degrees Fahrenheit [°F], how many degrees Celsius [°C] wi...
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
For the circuit shown, use the node-voltage method to find v1, v2, and i1.
How much power is delivered to the c...
Electric Circuits. (11th Edition)
Modify the Product_T table by adding an attribute QtyOnHand that can be used to track the finished goods invent...
Modern Database Management
You have three identical prizes to give away and a pool of ten finalists. The finalists are assigned numbers fr...
Java: An Introduction to Problem Solving and Programming (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Prob.7. A smooth flat plate of length 5 m and width 2 m is moving with a velocity of 4 m/s in stationary air of density 1.25 kg/m and kinematic viscosity 1.5 x 10-5 m2/s. Determine thickness of the boundary layer at the trailing edge of the smooth plate. Find the total drag on one side of the plate assuming that the boundary layer is turbulent from the very beginning.arrow_forwardi have fluid mechanics exam tomorrow but i couldnt understand first 3 part of that question. thank you so much who can solve this for me .arrow_forwardFrom the laminar boundary layer the velocity distributions given below, find the momentum thickness θ, boundary layer thickness δ, wall shear stress τw, skin friction coefficient Cf , and displacement thickness δ*1. A linear profile, u(x, y) = a + by 2. von K ́arm ́an’s second-order, parabolic profile,u(x, y) = a + by + cy2 3. A third-order, cubic function,u(x, y) = a + by + cy2+ dy3 4. Pohlhausen’s fourth-order, quartic profile,u(x, y) = a + by + cy2+ dy3+ ey4 5. A sinusoidal profile,u = U sin (π/2*y/δ)arrow_forward
- 6- A uniform free stream of air at 0.8 m/s flows over a flat plate (4 m long x 1 m wide). Assuming the boundary layer to be laminar on the plate and the velocity profile is: Find the ratio of the drag force on the front half portion to the drag U. 2 force on the rear half portion of the plate. (p = 1.2 kg/m; v = 1.51x10 m²/s) [2.42]arrow_forwardAir at 15°C forms a boundary layer near a solid wall. The velocity distribution in the boundary layer is given by: u/U = 1- exp (-2y/8), where U 35 m/sec. and 8 = 0.8 cm. Find the shear stress at wall (y 0).arrow_forwardHand written plzzzzzzz solve 35 mins...i'll give you multiple upvotearrow_forward
- A Savonius rotor can be approximatedby the two open half-tubes in Fig mounted ona central axis. If the drag of each tube is similar to thatin Table 7.2, derive an approximate formula for therotation rate Ω, as a function of U, D, L, and the fluidproperties (ρ, μ).arrow_forwardThese are the questions, would like working for each of them to be neat.arrow_forwardWhen immersed in a uniform stream V, a heavy rod hingedat A will hang at Pode’s angle θ, after an analysis by L.Pode in 1951 (Fig.). Assume that the cylinder hasnormal drag coefficient CDN and tangential coefficient CDTthat relate the drag forces to VN and VT, respectively. Derivean expression for Pode’s angle as a function of the flow androd parameters. Find θ for a steel rod, L = 40 cm, D = 1 cm,hanging in sea-level air at V =35 m/s.arrow_forward
- The large block shown is x = 72 cm wide, y = 54 cm long, and z = 9.0 cm high. This block is passing through air (density of air p = 1.43 kg/m³) at a speed of v = 8.61 m/s. Find the drag force F41 acting on the block when it has the velocity vj and a drag coefficient I = 0.812. V2 Fa.1 N %3D Find the drag force F42 acting on the block when it has the velocity vz with a drag coefficient I = 0.893. F42 N Find the drag force Fa.3 acting on the block when it has the velocity vz with a drag coefficient I = 1.06. F4.3 = N ENarrow_forwardConsider two pressure taps along the wall of a laminar boundary layer as in Fig. The fluid is air at 25°C, U1 = 13.7 m/s, and the static pressure P1 is 2.96 Pa greater than static pressure P2, as measured by a very sensitive differential pressure transducer. Is outer flow velocity U2 greater than, equal to, or less than outer flow velocity U1? Explain. Estimate U2arrow_forwardA heavy sphere attached to a string should hang at an angleθ when immersed in a stream of velocity U, as in Fig. Derive an expression for θ as a function of thesphere and flow properties. What is θ if the sphere is steel(SG = 7.86) of diameter 3 cm and the flow is sea-levelstandard air at U =40 m/s? Neglect the string drag.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Unit Conversion the Easy Way (Dimensional Analysis); Author: ketzbook;https://www.youtube.com/watch?v=HRe1mire4Gc;License: Standard YouTube License, CC-BY