FLUID MECHANICS FUNDAMENTALS+APPS
4th Edition
ISBN: 9781259877766
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9, Problem 126P
To determine
(a)
The continuity equation satisfies or not.
To determine
(b)
The pressure as a function of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider a three-dimensional, steady velocity field given by
V = (u, v, w) = (3.2 + 1.4x)i + (2.4 – 2.1y)j + (w)k.
If the w-velocity is only a function of z, and the magnitude of w-velocity at z = 0 is 5, find the
velocity field of w if the flow is known to be incompressible.
1. For incompressible flows, their velocity field
2. In the case of axisymmetric 2D incompressible flows,
where is Stokes' stream function, and
u = VXS,
S(r, z, t) =
Uz =
where {r, y, z} are the cylindrical coordinates in which the flow is independent on the coordinate and hence
1 Ꭷ
r dr
1 dy
r dz
Show that in spherical coordinates {R, 0, 0} with the same z axis, this result reads
Y(R, 0, t)
R sin 0
S(R, 0, t)
UR
uo
Y(r, z, t)
r
=
=
-eq,
and
Up = =
1
ay
R2 sin Ꮎ ᎧᎾ
1 ƏY
R sin Ꮎ ᎧR
-eq
2
(1)
(2)
(3)
3. The two-dimensional velocity field in a fluid is given by V 2ri+ 3ytj. (i) Obtain a parametric = equation for the pathline of the particle that passed through (1.1) at t = 0. (ii) Without calculating any equation: if I were to draw the streak-line at t = 0 of all points that passed through (1, 1) would it be the same or different? Justify yourself.
Chapter 9 Solutions
FLUID MECHANICS FUNDAMENTALS+APPS
Ch. 9 - Explain the fundamental differences between a flow...Ch. 9 - What does it mean when we say that two more...Ch. 9 - The divergence theorem is v.cdv=A c . n dACh. 9 - Prob. 4CPCh. 9 - Prob. 5CPCh. 9 - Prob. 6CPCh. 9 - Prob. 7PCh. 9 - Prob. 8PCh. 9 - Let vector G=2xzi12x2jz2kk . Calculate the...Ch. 9 - Prob. 10P
Ch. 9 - Prob. 11PCh. 9 - Prob. 12PCh. 9 - Prob. 13PCh. 9 - Alex is measuring the time-averaged velocity...Ch. 9 - Let vector c be given G=4xziy2i+yzkand let V be...Ch. 9 - The product rule can be applied to the divergence...Ch. 9 - Prob. 18PCh. 9 - Prob. 19PCh. 9 - Prob. 20CPCh. 9 - In this chapter we derive the continuity equation...Ch. 9 - Repeat Example 9-1(gas compressed in a cylinder by...Ch. 9 - Consider the steady, two-dimensional velocity...Ch. 9 - The compressible from of the continuity equation...Ch. 9 - In Example 9-6 we derive the equation for...Ch. 9 - Consider a spiraling line vortex/sink flow in the...Ch. 9 - Verify that the steady; two-dimensional,...Ch. 9 - Consider steady flow of water through an...Ch. 9 - Consider the following steady, three-dimensional...Ch. 9 - Consider the following steady, three-dimensional...Ch. 9 - Two velocity components of a steady,...Ch. 9 - Imagine a steady, two-dimensional, incompressible...Ch. 9 - The u velocity component of a steady,...Ch. 9 - Imagine a steady, two-dimensional, incompressible...Ch. 9 - The u velocity component of a steady,...Ch. 9 - What is significant about curves of constant...Ch. 9 - In CFD lingo, the stream function is often called...Ch. 9 - Prob. 39CPCh. 9 - Prob. 40CPCh. 9 - Prob. 41PCh. 9 - Prob. 42PCh. 9 - Prob. 44PCh. 9 - Prob. 45PCh. 9 - As a follow-up to Prob. 9-45, calculate the volume...Ch. 9 - Consider the Couette flow of Fig.9-45. For the...Ch. 9 - Prob. 48PCh. 9 - AS a follow-up to Prob. 9-48, calculate the volume...Ch. 9 - Consider the channel flow of Fig. 9-45. The fluid...Ch. 9 - In the field of air pollution control, one often...Ch. 9 - Suppose the suction applied to the sampling...Ch. 9 - Prob. 53PCh. 9 - Flow separates at a shap corner along a wall and...Ch. 9 - Prob. 55PCh. 9 - Prob. 56PCh. 9 - Prob. 58PCh. 9 - Prob. 59PCh. 9 - Prob. 60PCh. 9 - Prob. 61PCh. 9 - Prob. 62PCh. 9 - Prob. 63EPCh. 9 - Prob. 64PCh. 9 - Prob. 65EPCh. 9 - Prob. 66PCh. 9 - Prob. 68EPCh. 9 - Prob. 69PCh. 9 - Prob. 71PCh. 9 - Prob. 72PCh. 9 - Prob. 73PCh. 9 - Prob. 74PCh. 9 - Prob. 75PCh. 9 - Wht in the main distionction between Newtormine...Ch. 9 - Prob. 77CPCh. 9 - What are constitutive equations, and to the fluid...Ch. 9 - An airplane flies at constant velocity Vairplane...Ch. 9 - Define or describe each type of fluid: (a)...Ch. 9 - The general cool volume from of linearmomentum...Ch. 9 - Consider the steady, two-dimensional,...Ch. 9 - Consider the following steady, two-dimensional,...Ch. 9 - Consider the following steady, two-dimensional,...Ch. 9 - Consider liquid in a cylindrical tank. Both the...Ch. 9 - Engine oil at T=60C is forced to flow between two...Ch. 9 - Consider steady, two-dimensional, incompressible...Ch. 9 - Consider steady, incompressible, parallel, laminar...Ch. 9 - Prob. 89PCh. 9 - Prob. 90PCh. 9 - Prob. 91PCh. 9 - The first viscous terms in -comonent of the...Ch. 9 - An incompressible Newtonian liquid is confined...Ch. 9 - Prob. 94PCh. 9 - Prob. 95PCh. 9 - Prob. 96PCh. 9 - Prob. 97PCh. 9 - Consider steady, incompressible, laminar flow of a...Ch. 9 - Consider again the pipe annulus sketched in Fig...Ch. 9 - Repeat Prob. 9-99 except swap the stationary and...Ch. 9 - Consider a modified form of Couette flow in which...Ch. 9 - Consider dimensionless velocity distribution in...Ch. 9 - Consider steady, incompressible, laminar flow of a...Ch. 9 - Prob. 104PCh. 9 - Prob. 105PCh. 9 - Prob. 106PCh. 9 - Prob. 107CPCh. 9 - Prob. 108CPCh. 9 - Discuss the relationship between volumetric strain...Ch. 9 - Prob. 110CPCh. 9 - Prob. 111CPCh. 9 - Prob. 112PCh. 9 - Prob. 113PCh. 9 - Look up the definition of Poisson’s equation in...Ch. 9 - Prob. 115PCh. 9 - Prob. 116PCh. 9 - Prob. 117PCh. 9 - For each of the listed equation, write down the...Ch. 9 - Prob. 119PCh. 9 - Prob. 120PCh. 9 - A block slides down along, straight inclined wall...Ch. 9 - Water flows down a long, straight, inclined pipe...Ch. 9 - Prob. 124PCh. 9 - Prob. 125PCh. 9 - Prob. 126PCh. 9 - Prob. 128PCh. 9 - The Navier-Stokes equation is also known as (a)...Ch. 9 - Which choice is not correct regarding the...Ch. 9 - In thud flow analyses, which boundary condition...Ch. 9 - Which choice is the genera1 differential equation...Ch. 9 - Which choice is the differential , incompressible,...Ch. 9 - A steady, two-dimensional, incompressible flow...Ch. 9 - A steady, two-dimensional, incompressible flow...Ch. 9 - A steady velocity field is given by...Ch. 9 - Prob. 137P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 1. A Cartesian velocity field is defined by V = 2xi + 5yz2j − t3k. Find the divergence of the velocity field. Why is this an important quantity in fluid mechanics? 2. Is the flow field V = xi and ρ = x physically realizable? 3. For the flow field given in Cartesian coordinates by u = y2 , v = 2x, w = yt: (a) Is the flow one-, two-, or three-dimensional? (b) What is the x-component of the acceleration following a fluid particle? (c) What is the angle the streamline makes in the x-y plane at the point y = x = 1?arrow_forwardIn plane stagnation flow, an incompressible fluid occupying the space y>0 has one velocity component given by Vx-x. The flow is two-dimensional and steady, such that V₂=0 and nothing depends on z or time t. (a) Use the continuity equation to determine Vy(x,y), given that Vy(x,0) =0. (This condition for Vy corresponds to the plane y=0 being an impenetrable boundary.) (b) is arbitrary, so you may set Y=0 at any convenient location.) Determine the stream function for this flow, (x,y). (The absolute value ofarrow_forward(b) Two velocity components of a steady, incompressible flow field are given as follows; u = 2ax + bxy + cy? v = axz – byz? where a, b and c are constants. Determine an expression for w as a function of x, y, and z.arrow_forward
- The velocity of flow of fluid is represented by the equation: V=2xi +3vj. The equation of the stream line passing through the point (4,3) is (A) 0.72x = 1,2 (B)¹ = 0.72x¹/² (C) 0.72x2=2 (D) None of thesearrow_forward3.4 Consider a steady, incompressible, 2D velocity field for motion parallel to the X-axis with constant shear. The shear rate is du/dy Ay. Obtain an expression for the velocity field V. Calculate the rate of rotation. Evaluate the stream function %3D for this flow field. Ay Ay + В і, о, Ay + By+ C 6. Ans: V= 2arrow_forwardThe velocity components of a flow field are given by: = 2x² – xy + z², v = x² – 4xy + y², w = 2xy – yz + y² (i) Prove that it is a case of possible steady incompressible fluid flow (ii) Calculate the velocity and acceleration at the point (2,1,3)arrow_forward
- 1. If u- 3x'yr and v = -6x'y'r answer the following questions giving reasons, Is this flow or fluid: (a) Real (Satisfies Continuity Principle). (b) Steady or unsteady. (c) Uniform or non-uniform. (d) One, two, or three dimensional. (e) Compressible or incompressible. Also, Find the acceleration at point (1,1). %3Darrow_forwardAn incompressible velocity field is given by u=a(x°y²-y), v unknown, w=bxyz where a and b are constants. (a)What is the form of the velocity component for that the flow conserves mass? (b) Write Navier- Stokes's equation in 2-dimensional space with x-y coordinate system.arrow_forward1. For a velocity field described by V = 2x2i − zyk, is the flow two- or threedimensional? Incompressible? 2. For an Eulerian flow field described by u = 2xyt, v = y3x/3, w = 0, find the slope of the streamline passing through the point [2, 4] at t = 2. 3. Find the angle the streamline makes with the x-axis at the point [-1, 0.5] for the velocity field described by V = −xyi + 2y2jarrow_forward
- Two velocity components of a steady, incompressible flow field are known: u = 2ax + bxy + cy2 and ? = axz − byz2, where a, b, and c are constants. Velocity component w is missing. Generate an expression for w as a function of x, y, and z.arrow_forwardA velocity field is given by u = 5y2, v = 3x, w = 0. (a) Is this flow steady or unsteady? Is it two- or three- dimensional? (b) At (x,y,z) = (3,2,–3), compute the velocity vector. (c) At (x,y,z) = (3,2,–3), compute the local (i.e., unsteady part) of the acceleration vector. (d ) At (x,y,z) = (3,2,–3), compute the convective (or advective) part of the acceleration vector. (e) At (x,y,z) = (3,2,–3), compute the (total) acceleration vector.arrow_forward6)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Introduction to Kinematics; Author: LearnChemE;https://www.youtube.com/watch?v=bV0XPz-mg2s;License: Standard youtube license