University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 8, Problem 8.92P
A 45.0-kg woman stands up in a 60.0-kg canoe 5.00 m long. She walks from a point 1.00 m from one end to a point 1.00 m from the other end (Fig. P8.92). If you ignore resistance to motion of the canoe in the water, how far does the canoe move during this process?
Figure P8.92
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
..
8.106 A 45.0-kg woman stands up in a 60.0-kg canoe 5.00 m
long. She walks from a point 1.00 m from one end to a point 1.00 m
from the other end (Fig. P8.106). If you ignore resistance to
motion of the canoe in the water, how far does the canoe move
during this process?
Figure P8.106
Finish
3.00 m
Start
1.00 m
1.00 m
Nixon is a tile worker, he hates physics and only likes cutting and
shaping his tiles. Her boss has given him a tile. It has a width of
50 cm. The tile must fit around a corner of a fireplace so a piece is
sawed out. The extracted piece is a smaller square and its side
length is only 25.0 cm. Because of the cutout segment, the
center of mass of the ceramic tile shifts a bit from point A to
point B. Nixon needs help to find the distance between point A
and B the ceramic tile her boss gave him.
50cm
25cm
8
S
Review. As shown in Figure P8.26, a light string that does not stretch changes from horizontal to vertical as it passes over the edge of a table. The string connects m1 , a 3.50- kg block originally at rest on the horizontal table at a height h = 1.20 m above the floor, to m2 , a hanging 1.90-kg block originally a distance d = 0.900 m above the floor. Neither the surface of the table nor its edge exerts a force of kinetic friction. The blocks start to move from rest. The sliding block m1 is projected horizontally after reaching the edge of the table. The hanging block m2 stops without bouncing when it strikes the floor. Consider the two blocks plus the Earth as the system. (a) Find the speed at which m1 leaves the edge of the table. (b) Find the impact speed of m1 on the floor. (c) What is the shortest length ofthe string so that it does not go taut while m1is in flight? (d) Is the energy of the systemwhen it is released from rest equal to the energy of the system just before m1…
Chapter 8 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 8.1 - Rank the following situations according to the...Ch. 8.2 - A spring-loaded toy sits at rest on a horizontal,...Ch. 8.3 - For each situation, state whether the collision is...Ch. 8.4 - Prob. 8.4TYUCh. 8.5 - Will the center of mass in Fig. 8.32 continue on...Ch. 8.6 - (a) If a rocket in gravity-free outer space has...Ch. 8 - In splitting logs with a hammer and wedge, is a...Ch. 8 - Suppose you catch a baseball and then someone...Ch. 8 - When rain falls from the sky, what happens to its...Ch. 8 - A car has the same kinetic energy when it is...
Ch. 8 - A truck is accelerating as it speeds down the...Ch. 8 - (a) If the momentum of a single point object is...Ch. 8 - A woman holding a large rock stands on a...Ch. 8 - In Example 8.7 (Section 8.3), where the two...Ch. 8 - In a completely inelastic collision between two...Ch. 8 - Since for a particle the kinetic energy is given...Ch. 8 - In each of Examples 8.10, 8.11, and 8.12 (Section...Ch. 8 - A glass dropped on the floor is more likely to...Ch. 8 - In Fig. 8.23b, the kinetic energy of the Ping-Pong...Ch. 8 - A machine gun is fired at a steel plate. Is the...Ch. 8 - A net force of 4 N acts on an object initially at...Ch. 8 - A net force with x-component Fx acts on an object...Ch. 8 - A tennis player hits a tennis ball with a racket....Ch. 8 - Prob. 8.18DQCh. 8 - An egg is released from rest from the roof of a...Ch. 8 - A woman stands in the middle of a perfectly...Ch. 8 - At the highest point in its parabolic trajectory,...Ch. 8 - When an object breaks into two pieces (explosion,...Ch. 8 - An apple falls from a tree and feels no air...Ch. 8 - Two pieces of clay collide and stick together....Ch. 8 - Two objects of mass M and 5M are at rest on a...Ch. 8 - A very heavy SUV collides head-on with a very...Ch. 8 - (a) What is the magnitude of the momentum of a...Ch. 8 - In a certain track and field event, the shotput...Ch. 8 - Objects A, B, and C are moving as shown in Fig....Ch. 8 - Two vehicles are approaching an intersection. One...Ch. 8 - One 110-kg football lineman is running to the...Ch. 8 - BIO Biomechanics. The mass of a regulation tennis...Ch. 8 - Force of a Golf Swing. A 0.0450-kg golf ball...Ch. 8 - Force of a Baseball Swing. A baseball has mass...Ch. 8 - A 0.160-kg hockey puck is moving on an icy,...Ch. 8 - A bat strikes a 0.145-kg baseball. Just before...Ch. 8 - CALC At time t = 0 a 2150-kg rocket in outer space...Ch. 8 - BIO Bone Fracture. Experimental tests have shown...Ch. 8 - A 2.00-kg stone is sliding to the right on a...Ch. 8 - CALC Starting at t = 0, a horizontal net force F =...Ch. 8 - To warm up for a match, a tennis player hits the...Ch. 8 - A 68.5-kg astronaut is doing a repair in space on...Ch. 8 - The expanding gases that leave the muzzle of a...Ch. 8 - Two figure skaters, one weighing 625 N and the...Ch. 8 - BIO Animal Propulsion. Squids and octopuses propel...Ch. 8 - You are standing on a sheet of ice that covers the...Ch. 8 - On a frictionless. horizontal air table, puck A...Ch. 8 - When cars are equipped with flexible bumpers, they...Ch. 8 - Two identical 0.900-kg masses are pressed against...Ch. 8 - Block A in Fig. E8.24 has mass 1.00 kg, and block...Ch. 8 - A hunter on a frozen, essentially frictionless...Ch. 8 - An atomic nucleus suddenly bursts apart (fissions)...Ch. 8 - Two ice skaters. Daniel (mass 65.0 kg) and Rebecca...Ch. 8 - You are standing on a large sheet of frictionless...Ch. 8 - You (mass 55 kg) are riding a frictionless...Ch. 8 - An astronaut in space cannot use a conventional...Ch. 8 - Asteroid Collision. Two asteroids of equal mass in...Ch. 8 - Two skaters collide and grab on to each other on...Ch. 8 - A 15.0-kg fish swimming at 1.10 m/s suddenly...Ch. 8 - Two fun-loving otters are sliding toward each...Ch. 8 - Deep Impact Mission. In July 2005, NASAs Deep...Ch. 8 - A 1050-kg sports car is moving westbound at 15.0...Ch. 8 - On a very muddy football field, a 110-kg...Ch. 8 - Accident Analysis. Two cars collide at an...Ch. 8 - Jack (mass 55.0 kg) is sliding due east with speed...Ch. 8 - BIO Bird Defense. To protect their young in the...Ch. 8 - At the intersection of Texas Avenue and University...Ch. 8 - A 5.00-g bullet is fired horizontally into a...Ch. 8 - A Ballistic Pendulum. A 12.0-g rifle bullet is...Ch. 8 - Combining Conservation Laws. A 15.0-kg block is...Ch. 8 - CP A 0.800-kg ornament is hanging by a 1.50-m wire...Ch. 8 - A 0.150-kg glider is moving to the right with a...Ch. 8 - Blocks A (mass 2.00 kg) and B (mass 6.00 kg) move...Ch. 8 - A 10.0-g marble slides to the left at a speed of...Ch. 8 - Moderators. Canadian nuclear reactors use heavy...Ch. 8 - You are at the controls of a particle accelerator,...Ch. 8 - Three odd-shaped blocks of chocolate have the...Ch. 8 - Prob. 8.52ECh. 8 - Pluto and Charon. Plutos diameter is approximately...Ch. 8 - A 1200-kg SUV is moving along a straight highway...Ch. 8 - Prob. 8.55ECh. 8 - At one instant, the center of mass of a system of...Ch. 8 - In Example 8.14 (Section 8.5), Ramon pulls on the...Ch. 8 - CALC A system consists of two particles. At t = 0...Ch. 8 - CALC A radio-controlled model airplane has a...Ch. 8 - Prob. 8.60ECh. 8 - A 70-kg astronaut floating in space in a 110-kg...Ch. 8 - A small rocket burns 0.0500 kg of fuel per second,...Ch. 8 - Obviously, we can make rockets to go very fast,...Ch. 8 - A steel ball with mass 40.0 g is dropped from a...Ch. 8 - Just before it is struck by a racket, a tennis...Ch. 8 - Three identical pucks on a horizontal air table...Ch. 8 - Blocks A (mass 2.00 kg) and B (mass 10.00 kg, to...Ch. 8 - A railroad handcar is moving along straight,...Ch. 8 - Spheres A (mass 0.020 kg), B (mass 0.030 kg), and...Ch. 8 - You and your friends are doing physics experiments...Ch. 8 - CP An 8.00-kg block of wood sits at the edge of a...Ch. 8 - CP A small wooden block with mass 0.800 kg is...Ch. 8 - Combining Conservation Laws. A 5.00-kg chunk of...Ch. 8 - CP Block B (mass 4.00 kg) is at rest at the edge...Ch. 8 - Two blocks have a spring compressed between them,...Ch. 8 - Automobile Accident Analysis. You are called as an...Ch. 8 - Accident Analysis. A 1500-kg sedan goes through a...Ch. 8 - CP A 0.150-kg frame, when suspended from a coil...Ch. 8 - A rifle bullet with mass 8.00 g strikes and embeds...Ch. 8 - A Ricocheting Bullet. A 0.100-kg stone rests on a...Ch. 8 - Prob. 8.81PCh. 8 - Prob. 8.82PCh. 8 - A ball with mass M, moving horizontally at 4.00...Ch. 8 - PA 20.00-kg lead sphere is hanging from a hook by...Ch. 8 - A 4.00-g bullet, traveling horizontally with a...Ch. 8 - A 5.00-g bullet is shot through a 1.00-kg wood...Ch. 8 - CP In a shipping company distribution center, an...Ch. 8 - Neutron Decay. A neutron at rest decays (breaks...Ch. 8 - Antineutrino. In beta decay, a nucleus emits an...Ch. 8 - Jonathan and Jane are sitting in a sleigh that is...Ch. 8 - Friends Burt and Ernie stand at opposite ends of a...Ch. 8 - A 45.0-kg woman stands up in a 60.0-kg canoe 5.00...Ch. 8 - You are standing on a concrete slab that in turn...Ch. 8 - CP In a fireworks display, a rocket is launched...Ch. 8 - A 7.0-kg shell at rest explodes into two...Ch. 8 - CP A 20.0-kg projectile is fired at an angle of...Ch. 8 - CP A fireworks rocket is fired vertically upward....Ch. 8 - A 12.0-kg shell is launched at an angle of 55.0...Ch. 8 - CP An outlaw cuts loose a wagon with two boxes of...Ch. 8 - DATA A 2004 Prius with a 150-lb driver and no...Ch. 8 - DATA In your job in a police lab, you must design...Ch. 8 - DATA For the Texas Department of Public Safety,...Ch. 8 - CALC A Variable-Mass Raindrop. In a...Ch. 8 - Prob. 8.104CPCh. 8 - CALC Use the methods of Challenge Problem 8.104 to...Ch. 8 - BIO MOMENTUM AND THE ARCHERFISH. Archerfish are...Ch. 8 - BIO MOMENTUM AND THE ARCHERFISH. Archerfish are...Ch. 8 - BIO MOMENTUM AND THE ARCHERFISH. Archerfish are...Ch. 8 - BIO MOMENTUM AND THE ARCHERFISH. Archerfish are...
Additional Science Textbook Solutions
Find more solutions based on key concepts
CAUTION Why does the presence of extinct forms and transitional features in the fossil record support the patte...
Biological Science (6th Edition)
Name the components (including muscles) of the thoracic cage. List the contents of the thorax.
Human Physiology: An Integrated Approach (8th Edition)
A source of electromagnetic radiation produces infrared light. Which of the following could be the wavelength ...
Chemistry: The Central Science (14th Edition)
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
29. For the reaction
determine the expression for the rate of the reaction in terms of the change in concentr...
Chemistry: Structure and Properties (2nd Edition)
9. a. In Figure Q23.9, what fraction of current I goes through the 3 ? resistor?
If the 9 ? resistor is replace...
College Physics: A Strategic Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A small block of mass m1 = 0.500 kg is released from rest at the top of a frictionless, curve-shaped wedge of mass m2 = 3.00 kg, which sits on a frictionless, horizontal surface as shown in Figure P8.55a. When the block leaves the wedge, its velocity is measured to be 4.00 m/s to the right as shown in Figure P8.55b. (a) What is the velocity of the wedge after the block reaches the horizontal surface? (b) What is the height h of the wedge?arrow_forwardA skateboarder with his board can be modeled as a particle of mass 76.0 kg, located at his center of mass (which we will study in Chapter 9). As shown in Figure P8.49, the skateboarder starts from rest in a crouch-ing position at one lip of a half-pipe (point ). The half-pipe is one half of a cylinder of radius 6.80 m with its axis horizontal. On his descent, the skateboarder moves without friction so that his center of mass moves through one quarter of a circle of radius 630 m. (a) Find his speed at the bottom of the half-pipe (point (b) Immediately after passing point he stands up and raises his arms, lifting his center of mass from 0.500 in to 0.950 m above the concrete (point ). Next, the skateboarder glides upward with his center of mass moving in a quarter circle of radius 5.85 m. His body is horizontal when he passes point , the far lip of the half-pipe. As he passes through point , the speed of the skateboarder is 5.14 m/s. How much chemical potential energy in the body of the skateboarder was converted to mechanical energy in the skateboarderEarth system when he stood up at point ? (c) How high above point does he rise? Caution: Do not try this stunt yourself without the required skill and protective equipment. Figure P8.49arrow_forwardThree runaway train cars are moving on a frictionless, horizontal track in a railroad yard as shown in Figure P11.73. The first car, with mass m1 = 1.50 103 kg, is moving to the right with speed v1 = 10.0 m /s; the second car, with mass m2 = 2.50 103 kg, is moving to the left with speed v2 = 5.00 m/s, and the third car, with mass m3 = 1.20 103 kg, is moving to the left with speed v3 = 8.00 m /s. The three railroad cars collide at the same instant and couple, forming a train of three cars. a. What is the final velocity of the train cars immediately after the collision? b. Would the answer to part (a) change if the three cars did not collide at the same instant? Explain. FIGURE P11.73arrow_forward
- What is the speedarrow_forwardA 40.0-kg child stands at one end of a 70.0-kg boat that is 4.00 m long (Fig. P8.69). The boat is initially 3.00 m from the pier. The child notices a turtle on a rock beyond the far end of the boat and proceeds to walk to that end to catch the turtle. (a) Neglecting friction between the boat and water, describe the motion of the system (child plus boat). (b) Where will the child be relative to the pier when he reaches the far end of the boat? (c) Will he catch the turtle? (Assume that he can reach out 1.00 m from the end of the boat.)arrow_forwardWhile walking through an orchard on a windy day, you see a 255 g apple hanging from a branch 10. m above the ground. A wind gust causes the apple to fall. You catch it at a height of 1.5 m from the ground. How much time does it take the apple to fall?arrow_forward
- I keep getting this question wrong, my first answer was 0 m/s and my second was 3 m/s. Please help, thank you so much!! :)arrow_forwardA person is crossing a bridge. The bridge is 3.2 meters long and is 25 kg. One side of the bridge rests on the ground while the other side of the bridge is elevated 25 degrees above the ground. The end of the bridge that is elevated is connected to a rope, which is attached to a overhanging section of a cliff. The person walking across is 62 kg, and walks three quarters of the way to the rope end of the bridge then stops. Please determine the magnitude of the force that the ground exerts on the bridge. (use image for reference)arrow_forward30. As shown in Figure P9.30, a bullet of mass m and speed v passes completely through a pendulum bob of mass M. The bullet emerges with a speed of v/2. The pendulum bob is suspended by a stiff rod (not a string) of length l and negli- giblemass. What is the mini- V/2 Figure P9.30 mum value of v such that the pendulum bob will barely swing through a complete vertical circle?arrow_forward
- Please answer in 30 min. I will upvote.arrow_forwardAlice and Bob are standing at the middle of a level, perfectly balanced seesaw. Alice has a mass of 40 kg and Bob has a mass of 50 kg. If Alice starts to walk at 1m/s away from the center of the seesaw while remaining on it, how fast should Bob walk so that the seesaw remains level? If you do not know what a seesaw is, feel free to use your computer to search online for illustrations.arrow_forwardA father (mF = 90 kg) and his daughter (mD= 42 kg) stand on a flat frozen lake of negligible friction. They hold a 12 m long rope stretched between them. The father and daughter then pull the rope to bring them together. If the father is initially standing at the origin, how far from the origin will they meet?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Impulse Derivation and Demonstration; Author: Flipping Physics;https://www.youtube.com/watch?v=9rwkTnTOB0s;License: Standard YouTube License, CC-BY