Block A in Fig. E8.24 has mass 1.00 kg, and block B has mass 3.00 kg. The blocks are forced together, compressing a spring S between them; then the system is released from rest on a level, frictionless surface. The spring, which has negligible mass, is not fastened to either block and drops to the surface alter it has expanded. Block B acquires a speed of 1.20 m/s. (a) What is the final speed of block A? (b) How much potential energy was stored in the compressed spring?
Learn your wayIncludes step-by-step video
Chapter 8 Solutions
University Physics with Modern Physics (14th Edition)
Additional Science Textbook Solutions
University Physics Volume 2
The Cosmic Perspective
College Physics
Life in the Universe (4th Edition)
College Physics: A Strategic Approach (4th Edition)
Conceptual Physical Science (6th Edition)
- Two gliders are set in motion on a horizontal air track. A spring of force constant k is attached to the back end of the second glider. As shown in Figure P8.48, the first glider, of mass m1, moves to the right with speed v1, and the second glider, of mass m2, moves more slowly to the right with speed v2. When m1 collides with the spring attached to m2, the spring compresses by a distance xmax, and the gliders then move apart again. In terms of v1, v2, m1, m2, and k, find (a) the speed rat maximum compression, (b) the maximum compression xmax, and (c) the velocity of each glider after m1 has lost contact with the spring.arrow_forwardYou hold a slingshot at arms length, pull the light elastic band back to your chin, and release it to launch a pebble horizontally with speed 200 cm/s. With the same procedure, you fire a bean with speed 600 cm/s. What is the ratio of the mass of the bean to the mass of the pebble? (a) 19 (b) 13 (c) 1 (d) 3 (e) 9arrow_forwardA block of mass m1 = 4.00 kg initially at rest on top of a frictionless, horizontal table is attached by a lightweight string to a second block of mass m2 = 3.00 kg hanging vertically from the edge of the table and a distance h = 0.450 m above the floor (Fig. P8.77). If the edge of the table is assumed to be frictionless, what is the speed with which the first block leaves the edge of the table?arrow_forward
- An inclined plane of angle = 20.0 has a spring of force constant k = 500 N/m fastened securely at the bottom so that the spring is parallel to the surface as shown in Figure P6.61. A block of mass m = 2.50 kg is placed on the plane at a distance d = 0.300 m from the spring. From this position, the block is projected downward toward the spring with speed v = 0.750 m/s. By what distance is the spring compressed when the block momentarily comes to rest?arrow_forwardTwo objects are connected by a light string passing over a light, frictionless pulley as shown in Figure P7.7. The object of mass m1 = 5.00 kg is released from rest at a height h = 4.00 m above the table. Using the isolated system model, (a) determine the speed of the object of mass m2 = 3.00 kg just as the 5.00-kg object hits the table and (b) find the maximum height above the table to which the 3.00-kg object rises.arrow_forwardA 6 000-kg freight car rolls along rails with negligible friction. The car is brought to rest by a combination of two coiled springs as illustrated in Figure P6.27 (page 188). Both springs are described by Hookes law and have spring constants k1 = 1 600 N/m and k2, = 3 400 N/m. After the first spring compresses a distance of 30.0 cm, the second spring acts with the first to increase the force as additional compression occurs as shown in the graph. The car comes to rest 50.0 cm after first contacting the two-spring system. Find the cars initial speed.arrow_forward
- Two blocks of masses m and 3m are placed on a frictionless, horizontal surface. A light spring is attached to the more massive block, and the blocks are pushed together with the spring between them (Fig. P8.7). A cord initially holding the blocks together is burned; after that happens, the block of mass 3m moves to the right with a speed of 2.00 m/s. (a) What is the velocity of the block of mass m? (b) Find the systems original elastic potential energy, taking m = 0.350 kg. (c) Is the original energy in the spring or in the cord? (d) Explain your answer to part (c). (e) Is the momentum of the system conserved in the bursting-apart process? Explain how that is possible considering (f) there are large forces acting and (g) there is no motion beforehand and plenty of motion afterward? Figure P8.7arrow_forwardA block is placed on top of a vertical spring, and the spring compresses. Figure P8.24 depicts a moment in time when the spring is compressed by an amount h. a. To calculate the change in the gravitational and elastic potential energies, what must be included in the system? b. Find an expression for the change in the systems potential energy in terms of the parameters shown in Figure P8.24. c. If m = 0.865 kg and k = 125 N/m, find the change in the systems potential energy when the blocks displacement is h = 0.0650 m, relative to its initial position. FIGURE P8.24arrow_forwardA 5.00-g bullet moving with an initial speed of v = 400 m/s is fired into and passes through a 1.00-kg block as shown in Figure P8.57. The block, initially at rest on a frictionless, horizontal surface, is connected to a spring with force constant 900 N/m. The block moves d = 5.00 cm to the right after impact before being brought to rest by the spring. Find (a) the speed at which the bullet emerges from the block and (b) the amount of initial kinetic energy of the bullet that is converted into internal energy in the bullet-block system during the collision. Figure P8.57arrow_forward
- The coefficient of friction between the block of mass ml = 3.00 kg and the surface in Figure P7.22 is k = 0.400. The system starts from rest. What is the speed of the ball of mass, m2 = 5.00 kg when it has fallen a distance h = 1.50 m? Figure P7.22arrow_forwardThree runaway train cars are moving on a frictionless, horizontal track in a railroad yard as shown in Figure P11.73. The first car, with mass m1 = 1.50 103 kg, is moving to the right with speed v1 = 10.0 m /s; the second car, with mass m2 = 2.50 103 kg, is moving to the left with speed v2 = 5.00 m/s, and the third car, with mass m3 = 1.20 103 kg, is moving to the left with speed v3 = 8.00 m /s. The three railroad cars collide at the same instant and couple, forming a train of three cars. a. What is the final velocity of the train cars immediately after the collision? b. Would the answer to part (a) change if the three cars did not collide at the same instant? Explain. FIGURE P11.73arrow_forwardA 1.00-kg object slides to the right on a surface having a coefficient of kinetic friction 0.250 (Fig. P8.62a). The object has a speed of vi = 3.00 m/s when it makes contact with a light spring (Fig. P8.62b) that has a force constant of 50.0 N/m. The object comes to rest after the spring has been compressed a distance d (Fig. P8.62c). The object is then forced toward the left by the spring (Fig. P8.62d) and continues to move in that direction beyond the spring's unstretched position. Finally, the object comes to rest a distance D to the left of the unstretched spring (Fig. P8.62e). Find (a) the distance of compression d, (b) the speed vat the unstretched posi-tion when the object is moving to the left (Fig. P8.624), and (c) the distance D where the abject comes to rest. Figure P8.62arrow_forward
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University