Applied Fluid Mechanics (7th Edition)
7th Edition
ISBN: 9780132558921
Author: Robert L. Mott, Joseph A. Untener
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 6, Problem 6.31PP
A liquid refrigerant (sg = 1.08) is flowing at a weight flow rate of 28.5 N/h. Calculate the volume flow rate and the mass flow rate.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A mixing vessel initially contains 4133.3 lb of liquid fluid. The vessel is fitted with two inlet pipes, one delivering hot fluid at a mass flow rate of 0.768 lb/sec and the other delivering cold flu'd at a mass flow rate of 0.439 lb/sec. Fluid exits through a single pipe at a mass flow rate of 1.133 lb/sec. Calculate the amount of fluid, in lb, in the tank after 25 minutes.
The mass flow rate of the gas in a gas turbine is 40 kg/s. The specific enthalpy and velocity in the inlet are 1300 kJ/kg and 160 m/s respectively while the outlet are 350 kJ/kg and 50 m/s respectively. Calculate for the work of the turbine if there is a heat loss of 1000 kW. (kW)
Find the mass in metric tons per day of at -5 °C that would theoretically made in a refrigerating
plant from water at 15 °C, when the mass flowrate of CO, is 0.7 kg/s. If the specific enthalpy of
evaporation of CO, at the evaporator pressure is 290.7 KJ/kg. The dryness fractions of the CO,
entering and leaving the evaporator are 0.22 and 0.98 respectively.
Use the following constants
(4.187 KJ/kg-K, 334 kJ/kg, 2257 KJ/kg).
Chapter 6 Solutions
Applied Fluid Mechanics (7th Edition)
Ch. 6 - Convert a volume flow rate of 3.0 gal/min to...Ch. 6 - Convert 459 gal/min to rrP/s.Ch. 6 - Convert 3720 gal/min to mJ/sCh. 6 - Convert 34.3 gal/min to mJ/sCh. 6 - Convert a volume flow rate of 125 L/min to m3/s.Ch. 6 - Convert 4500 L/min to m5/s.Ch. 6 - Convert 15 000 L/minto m3/s.Ch. 6 - Convert 459 gal/min to L/mninCh. 6 - Convert 3720 gal/min to L/minCh. 6 - Convert 23.5cm2/stom3/s.
Ch. 6 - '6.11 Convert 0.296cm5/stom3/s.Ch. 6 - Convert 0.105 cm3/s to L/minCh. 6 - Convert 3.53103m3/s to L/min.Ch. 6 - Convert 5.26106m3stoL/min.Ch. 6 - Prob. 6.15PPCh. 6 - Convert 20 gal/min to ft'/s.Ch. 6 - Convert 2500 gal/min to ft5/s.Ch. 6 - Convert 2.50 gal/min to ft3/s.Ch. 6 - Convert 125 ft3/s to gal/minCh. 6 - Convert 0.060 ft3/s to gal/min.Ch. 6 - Convert 0.03 ft5/s to gal/minCh. 6 - Convert ft5/s sto gal/minCh. 6 - Table 6.21 lists the range of typical volume flow...Ch. 6 - Table 6.2 lists the range of typical volume flow...Ch. 6 - A certain deep-well pump for a residence is rated...Ch. 6 - A small pump delivers 0.85 gal/h of liquid...Ch. 6 - A small metering pump delivers 11.4 gal of a water...Ch. 6 - A small metering pump delivers 19.5 mL/min of...Ch. 6 - Water at 10 C is flowing at 0.075 m3/s Calculate...Ch. 6 - Oil for a hydraulic system (sg =0.90 ) is flowing...Ch. 6 - A liquid refrigerant (sg = 1.08) is flowing at a...Ch. 6 - After the refrigerant from Problem 6.31 flashes...Ch. 6 - A fan delivers 640ft3/min (CFM) of air. If the...Ch. 6 - A large blower for a furnace delivers 47000ft3/min...Ch. 6 - A furnace requires 1200 Ib/h of air for efficient...Ch. 6 - If a pump removes 1.65 gal/min of water from a...Ch. 6 - Calculate the diameter of a pipe that would carry...Ch. 6 - If the velocity of a liquid is 1.65 ft/s in a...Ch. 6 - When 2000 L/min of water flows through a circular...Ch. 6 - Water flows at 1.20 m/s in a circular section with...Ch. 6 - Figure 6.16 shows a fabricated assembly made from...Ch. 6 - A standard Schedule 40 steel pipe is to be...Ch. 6 - If water at 180 F is flowing with a velocity of...Ch. 6 - A standard steel tube, 1.5 25-mm OD 3 1,5-mm wall...Ch. 6 - The recommended velocity of flow in the discharge...Ch. 6 - Repeat Problem 6.45, except specify suitable sizes...Ch. 6 - Table 6.2 shows the typical volume flow rate for...Ch. 6 - Repeat Problem 6.47 but use Schedule 80 DM pipeCh. 6 - Compute the resulting velocity of flow if 400...Ch. 6 - Repeat Problem 6.49 for a DN 50 Schedule 30 pipe.Ch. 6 - Compute the resulting velocity of flow if 400...Ch. 6 - Repeat Problem 6.51 for a 4-in Schedule 30 pipe.Ch. 6 - From the list of standard hydraulic steel tubing...Ch. 6 - A standard 6-in Schedule 40 steel pipe is carrying...Ch. 6 - For Problems 6.55-6.57, use Fig. 6.3 O to specify...Ch. 6 - For Problems 6.55-6.57, use Fig. 6.3 to specify...Ch. 6 - For Problems 6.55-6.57, use Fig. 6.3 O to specify...Ch. 6 - A venturi meter is a device that uses a...Ch. 6 - A flow nozzle, shown in Fig. 6.18 is used to...Ch. 6 - Gasoline (sg = 0.67) is flowing at 0.11 m3/s in...Ch. 6 - Water at 10 C is flowing from point A to point B...Ch. 6 - Calculate the volume flow rate of water at 5 C...Ch. 6 - Calculate the pressure required in the larger...Ch. 6 - Kerosene with a specific weight of 50.0 lb/ft3 is...Ch. 6 - For the system shown in Fig. 6.23 ; calculate (a)...Ch. 6 - For the system shown in Fig. 6.24ss, calculate (a)...Ch. 6 - For the tank shown in Fig. 6.25lO, calculate the...Ch. 6 - Calculate the pressure of the air in the sealed...Ch. 6 - For the siphon in Fig. 6.26, calculate (a) the...Ch. 6 - For the siphon in Fig. 6.26 , calculate the...Ch. 6 - For the siphon in Fig. 6.26 , assume that the...Ch. 6 - For the siphon shown in Fig. 6.27, calculate (a)...Ch. 6 - For the special fabricated reducer shown in Fig....Ch. 6 - In the fabricated enlargement shown in Fig. 6.29,...Ch. 6 - Figure 6.30 shows a manometer being used to...Ch. 6 - For the venturi meter shown in Fig. 6.30,...Ch. 6 - Oil with a specific weight of 8.64 kN/m3 flows...Ch. 6 - The venturi meter shown in Fig. 6.32 iP carries...Ch. 6 - Oil with a specific gravity of 0.90 is flowing...Ch. 6 - Oil with a specific gravity of 0.90 is flowing...Ch. 6 - Gasoline (sg = 0.67) is flowing at 4.0 ft3/s in...Ch. 6 - Oil with a specific weight of 55.0lb/ft3 flows...Ch. 6 - Draw a plot of elevation head, pressure head,...Ch. 6 - Prob. 6.84PPCh. 6 - Figure 6.36 shows a system in which water flows...Ch. 6 - Figure 6.37 shows a venturi meter with a U-tube...Ch. 6 - For the tank shown in Fig. 6.38, compute the...Ch. 6 - What depth of fluid above the outlet nozzle is...Ch. 6 - Derive Torricelli's theorem for the velocity of...Ch. 6 - Solve Problem 6.88 using the direct application of...Ch. 6 - To what height will the jet of fluid rise for the...Ch. 6 - To what height will the jet of water rise for the...Ch. 6 - What pressure is required above the water in Fig....Ch. 6 - What pressure is required above the water in Fig....Ch. 6 - Compute the time required to empty the tank shown...Ch. 6 - Compute the time required to empty the tank shown...Ch. 6 - Compute the time required to empty the tank shown...Ch. 6 - Compute the time required to empty the tank shown...Ch. 6 - Compute the time required to reduce the depth in...Ch. 6 - Compute the time required to reduce the depth in...Ch. 6 - Compute the time required to reduce the depth in...Ch. 6 - Compute the time required to reduce the depth in...Ch. 6 - Prob. 6.103PPCh. 6 - Repeat Problem 6.101 if the tank is sealed and a...Ch. 6 - Repeat Problem 6.96 if the tank is sealed and a...Ch. 6 - Repeat Problem 6.100 if the tank is sealed and a...Ch. 6 - A village currently carries water by hand from a...Ch. 6 - A "spa tub" is to be designed to replace bath tubs...Ch. 6 - A simple soft drink system relies on pressurized...Ch. 6 - A concept team for a toy company is considering a...Ch. 6 - 6.111 Bernoulli's principle applies to Venturi...Ch. 6 - Prob. 6.112PPCh. 6 - You are to develop a mixing valve for use in a...Ch. 6 - Prob. 6.114PPCh. 6 - You would like to empty the in-ground pool in the...Ch. 6 - Prob. 6.116PPCh. 6 - Create a spreadsheet for computing the values of...Ch. 6 - Prob. 2APCh. 6 - Prob. 3APCh. 6 - Create a spreadsheet for computing, using Eq....Ch. 6 - Prob. 5APCh. 6 - Create a spreadsheet for computing the velocity of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Q-1(c): Consider a case in which the air inside the pressurized cabin of a jet transport flying at some altitude of pressure, 0.9 atm and of temperature, 15°C. The total volume of air at any instant inside the cabin is 1800m3. If the air in the cabin is completely recirculated through the air conditioning system every 20 min, calculate the mass flow of air in kg/s through the system. I Answer:arrow_forward1. Determine the mass flow rate at the inlet and exits, in kg/s. 3 1 the (AV)2 = (AV)3 www ㅋarrow_forward4. Explain step by step.arrow_forward
- 3. The power requirement of a fan in kW in order to supply air at a rate of 500m3/h at a total discharge pressure of 0.5psia in kW isarrow_forwardSteam generators are a type of heat exchanges that are used inpower plants to generate steam at desired pressure andtemperature (Fig. Q1.b). In a steam generator, saturated liquidwater at 30°C enters a 60-mm diameter tube at the volume flowrate of 12 L/s. After exchanging heat with hot gas, the waterchanges to steam and leaves the generator at a pressure of 9 MPaand a temperature of 400°C. During this process, the diameter ofthe water/steam tube does not change. Where necessary, assume air as an ideal gas and consider R = 287J/(kg.K), Cp = 1005 J/(kg.K), Cv = 718 J/(kg.K). (i) Calculate the steam mass flow rate and inlet velocity of the steam? (ii) What is the exit velocity of the steam? (iii) Calculate the rate of heat transfer (in MW) required tochange the phase of liquid water to steam.arrow_forwardThe water level required in a tank to obtain velocity of 10 m/s at bottom isarrow_forward
- An oxygen tank has a volume of 4 cubic meters and is at 20 degrees C and 700 kPa. The valve is opened, and some oxygen is released until the pressure in the Tank drops to 500 kPa. If the temperature in the tank does not change during the process: The mass of oxygen that has been released from the tank is.... ..kg. Assume: Oxygen is an ideal gas and its ideal gas constant is 260 N.m/kg.K Where K is the degrees, Kelvin.arrow_forwardA pump is used to raise the pressure of water from 0 psig to 55 psia. How much power (in kW) will be required to pump 1.5ft3/s of water? What is the effect of the water temperature on the pump power that is required? a. Sketch the problem. b.Draw lines identifying the control volume, or control mass. c.Identify the states with numbers, letters, or descriptions such as “in” and “out”. d.Write down the knowns and unknowns. e.Identify what is being asked for. f.State all assumptions.arrow_forward14. Air is contained in a piston - cylinder arrangement. The following data were gathered: P= 700 KPa,V -010 m/kg.m, and u, = 160 KJ/kgm. The air expands slowly with the pressure remaining constant until the specific volume becomes, V2= 0.20 m³/kg. and the internal energy becomes, u2 = 310 KJ/kgm- Calculate the work done by the gas and the heat transferred.arrow_forward
- p46,#13 with illustration and explanationarrow_forwardEither the system illustrated below where the fluid considered is water. 1. Calculate: (a) the internal energy (specific), and (b) the mass finally remaining in the volume of Control. 2. In the control volume, what is: (a) the specific internal energy of the saturated steam, (b) The specific internal energy of the saturated liquid, and (c) the (final) temperature? 3 kg. 30 m 100 kPa, 160°C 2 kg, 10 m 100 kPa, 140°C, 200 m/s 3 2 1 kg, 0 m 100 kPa. 100°C, i 1000 m/s ++ Q=9200 kJ mini= 10 kg 100 kPa, x=0.6 min= ? kg 100 kPa, Uin=? +7 kg, 20 m 4 100 kPa, 150°C 8 kg. 0 m 5 100 kPa. 130°C, 100 m/sarrow_forwardThe enthalpy of air is increased by 139.586 KJ/kg in a compressor. The rate of air flow is 16.42 kg/min. The power input is 48.2 KW. Determine the heat flow in KW. pls include in the equation what is energy in and energy outarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Refrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage Learning
Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning
Power Plant Explained | Working Principles; Author: RealPars;https://www.youtube.com/watch?v=HGVDu1z5YQ8;License: Standard YouTube License, CC-BY