Concept explainers
The HST cost about $1.7 billion for construction and $300 million for its shuttle launch, and it costs $250 million per year to operate. If the telescope lasts for 20 years, what is the total cost per year? Per day? If the telescope can be used just 30% of the time for actual observations, what is the cost per hour and per minute for the astronomer’s observing time on this instrument? What is the cost per person in the United States? Was your investment in the Hubble Space telescope worth it?
Trending nowThis is a popular solution!
Chapter 6 Solutions
Astronomy
Additional Science Textbook Solutions
College Physics: A Strategic Approach (3rd Edition)
University Physics Volume 3
Lecture- Tutorials for Introductory Astronomy
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
Applied Physics (11th Edition)
Essential University Physics: Volume 1 (3rd Edition)
- The Giant Magellan Telescope is a new telescope being built in Chile with a mirror 25 meters in diameter. Part 1: If you neglect the impact of Earth's atmosphere, what is the angular resolution limit (diffraction limit or resolving power) of this telescope in green light (500 nm)? Give your answer in arcseconds. Part 2: The current Magellan telescope has a mirror 6 meters in diameter. How much more light per second will the Giant Magellan capture compared to the current Magellan?arrow_forwardThere is one part to this question. I need to know the cm. Thank you!arrow_forwardWhat diameter telescope is needed to resolve the separation between an Earth-like planet and its star at 550 nm if the linear separation between them is 1 AU and the star system is 4 pc from Earth? (Give your answer in m.) marrow_forward
- When astronomers discuss the apertures of their telescopes, they say bigger is better. Explain why. a) A wider aperture can observe a significantly larger portion of the sky. b) A wider aperture makes a telescope easier to aim. c) A wider aperture allows a telescope to collect more light, so it can produce images with higher resolution. d) A wider aperture allows a telescope to collect more light, so it can detect fainter light sources.arrow_forwardTheoretically (that is, if seeing were not an issue), the resolution of a telescope is inversely proportional to its diameter. How much better is the resolution of the ALMA when operating at its longest baseline than the resolution of the Arecibo telescope?arrow_forwardWhat kind of visible-light and infrared telescopes on the ground are astronomers planning for the future? Why are they building them on the ground and not in space?arrow_forward
- What would be the properties of an ideal astronomical detector? How closely do the actual properties of a CCD approach this ideal?arrow_forwardMany decades ago, the astronomers on the staff of Mount Wilson and Palomar Observatories each received about 60 nights per year for their observing programs. Today, an astronomer feels fortunate to get 10 nights per year on a large telescope. Can you suggest some reasons for this change?arrow_forwardWhat diameter telescope (in m) would you need to observe Olympus Mons (624 kmin diameter) from Earth at a wavelength of 550 nm when Mars is2.55×106km away?xUse the small angle formula to calculate the angular size of Olympus Mons. Then use the telescope resolution formula to calculate the diameter needed to resolve it marrow_forward
- A telescope with diameter of 300 m observes in the radio part of the EM spectrum. What is the theoretical separation distance that can be resolved on the surface of Jupiter with 3 cm radio waves? Assume the distance to Jupiter is 928 million km.arrow_forwardExplain in a paragraph, what is the TMT and why the TMT is considered the most controversial telescope in the world.arrow_forwardVoyager 2. When the Voyager 2 spacecraft was approaching towards its Neptune encounter in 1989, it was 4.5 × 10° km away from the earth. Its radio transmitter, with which it communicated with us (and we communicated with it), broadcast with a mere 22 Watt of power at the S-band (2.1 GHz). (Your home wi-fi router emits around 2 Watt at 2.4 GHz wi-fi band). Assuming the Voyager transmitter broadcast equally in all directions, (a) What signal intensity was received on the earth? (b) What electric and magnetic field amplitudes were detected? (c) How many 2.1 GHz photons were arriving per second on a radio-receiver antenna with a circular cross-section of diameter 34 meters? Two counter-propagating plane waves (a) Let E(z, t) = E0 cos(kz – wt)â + E, cos(kz + wt)x. Write E(z, t) in simpler form and find the associated magnetic field. (b) For the fields in part (a), find the instantaneous and time-averaged electric and magnetic field energy densities. (c) Let E(z, t) = E, cos(kz – wt)x + E,…arrow_forward
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning