Concept explainers
Effect on blood of walking. While a person is walking, his arms swing through approximately a 45° angle in 1/2 s. As a reasonable approximation, we can assume that the arm moves with constant speed during each swing. A typical arm is 70.0 cm long, measured from the shoulder joint. (a) What is the acceleration of a 1.0 gram drop of blood in the fingertips at the bottom of the swing? (b) Make a free-body diagram of the drop of blood in part (a). (c) Find the force that the blood vessel must exert on the drop of blood in part (b). Which way does this force point? (d) What force would the blood vessel exert if the arm were not swinging?
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
College Physics (10th Edition)
Additional Science Textbook Solutions
Campbell Essential Biology (7th Edition)
College Physics: A Strategic Approach (3rd Edition)
Organic Chemistry (8th Edition)
Cosmic Perspective Fundamentals
Genetic Analysis: An Integrated Approach (3rd Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
- A drag chute must be designed to reduce the speed of a 1171 kg dragster from 342 km/hr to 80 km/hr in 4 seconds. Assume that the drag force is proportional to the velocity (kv). a) What value of the drag coefficient k is needed to accomplish this? kg · s? (Leave an exact answer.) m2 k = b) How far (in meters) will the dragster travel in the 4-sec interval? d = meters. (Round to the nearest meter) Question Help: O Message instructor Submit Questionarrow_forwardAn SUV drives on a straight-line track. Starting with a speed v0 = 14.4m/s, it comes to rest over a distance d = 28.8m Part (a) Write an expression for the magnitude of the net force on a passenger with mass m . If m = 61.3kg, then what is the numeric value, in newtons, for the net force in Part (a)? .arrow_forwardA copper block with mass m = 200 g, is at rest on a glass surface, where the plane makes an angle θθ = 45∘. Assume that the glass surface is frictionless. Calculate the acceleration of the copper block when it is released from rest. Express your result in m/s2. Using the information presented calculate the force acting on the mass, m = 200 g, just as it is released from the top of the inclined plane, at y = 8.48 m. Express your answer in Newtons.arrow_forward
- A block of mass 3.2 kg is released from rest on a frictionless inclined plane, which makes an angle an angle 30° with the horizontal. The blocks travels a distance of 2.5 m before hitting the ground. (a) Find the acceleration of the block. (b) Find the speed of the block when it hits the ground. (c) What must be the angle of inclination to achieve an acceleration of 7.5 m/s² ?arrow_forwardA 0.152 kg ball is attached to a string that is 62.2 cm long. The string will break if subjected to a tension force of 4.8 N. If a small child swings the ball in a horizontal circle around her head, at what velocity will the string break?arrow_forwardWhen an object accelerates at 9.8 m/s2 (or 32 ft/s2), we say it accelerates with 1 g. This is true whether the object is falling under gravity, or due to something else. Using the constant-acceleration approximation, determine how many g's are involved at Cedar Point's Top Thrill Dragster. According to the park, it goes 0 to 170 mph in 3.8 s on the horizontal track, before turning up vertically. Round the final answer to three decimal places.arrow_forward
- It has been determined that a force over 200 N can injure the hand. What is the shortest period of time it will take to stop a 2 kg object traveling at 75 m/s if the hand is to be protected?arrow_forwardWhile a person is walking, his arms {with typical lengths 70 cm measured from the shoulder joint) swing through approximately a 45 angle in 0.5 s. As a reasonable approximation, we can assume that the arm moves with constant speed during each swing. Find the magnitude of the force that the blood vessel must exert on the drop of blood. Express your answer using two significant figures. Find the direction of the force that the blood vessel must exert on the drop of blood What force would the blood vessel exert if the arm were not swinging? Express your answer using two significant figures. Mars rotates on its axis once every 24.8 hours, its mass is 6.42 Times 1023 kg and its radius is 3.37 Times 106 m What is the free-fall acceleration on Mars? Express your answer using three significant figures. Estimate the maximum speed that an astronaut can walk on the surface of Mars. Express your answer using two significant figures.arrow_forwardIf motor M exerts a force of F = (10t2 + 100) N on the cable, where t is in seconds, determine the velocity of the 25-kg crate when t = 4 s. The coefficients of static and kinetic friction between the crate and the plane are μ s = 0.3 and μ k = 0.25, respectively. The crate is initially at restarrow_forward
- At Ted's request, Bill pushes the pizza box across the granite countertop towards Ted. When the box leaves Bill's hand it is sliding at 2.60 m/s. The box comes to rest over a distance of 110 cm. What is the coefficient of kinetic friction, uk, between the pizza box and the countertop? (Ignore air drag.)arrow_forwardA 0.80-kg ball, attached to the end of a horizontal cord, is rotated in a circle of radius 1.6 m on a frictionless horizontal surface.arrow_forwardThe muzzle velocity of a typical 500 g spud is 25 m/s . The force given by the spud is K/(x+.09) where x is the distance of the barrel in meters. If the length of the barrel is 75 cm, what is the constant K? What is the force on the spud?arrow_forward
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning