College Physics (10th Edition)
10th Edition
ISBN: 9780321902788
Author: Hugh D. Young, Philip W. Adams, Raymond Joseph Chastain
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 27P
Your spaceship lands on an unknown planet. To determine the characteristics of this planet, you does a wrench from 5.00 m above the ground and measure that it hits the ground 0.811 s later. (a) What is the acceleration of gravity near the surface of this planet? (b) Assuming that the planet has the same density as that of earth (550C Kg/m3), what is the radius of the planet?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In this problem, you are going to explore three different ways to determine the gravitational constant G.
a) By observing that the centripetal acceleration of the Moon around the Earth is ac = 2.66 × 10-3 m/s2, what is the gravitatonal constant G, in cubic meters per kilogram per square second? Assume the Earth has a mass of ME = 5.96 × 1024 kg, and the mean distance between the centers of the Earth and Moon is rm = 3.81 × 108 m.
b) Measuring the centripetal acceleration of an orbiting object is rather difficult, so an alternative approach is to use the period of the orbiting object. Find an expression for the gravitational constant in terms of the distance between the gravitating objects rm, the mass of the larger body (the earth) ME, and the period of the orbiting body T.
c) The gravitational constant may also be calculated by analyzing the motion of an object, launched from the surface of the earth at an initial velocity of vi. Find an expression of the gravitational constant…
A planet orbiting a distant star has radius 3.54×106 mm. The escape speed for an object launched from this planet's surface is 7.65×103 m/sm/s.
What is the acceleration due to gravity at the surface of the planet?
Express your answer with the appropriate units.
Your spaceship lands on an unknown planet. To determine the characteristics of this planet, you drop a wrench from 3.00 m above the ground and measure that it hits the ground 0.814 s later.
a) What is the acceleration of gravity near the surface of this planet?
b) Assuming that the planet has the same density as that of earth (5500 kg/m^3), what is the radius of the planet?
Chapter 6 Solutions
College Physics (10th Edition)
Ch. 6 - If there is a net force on a particle in uniform...Ch. 6 - As a car rounds a banked circular curve at...Ch. 6 - A student wrote, The reason an apple falls...Ch. 6 - Non-physicists often ask questions such as What...Ch. 6 - During an actual interview for a college teaching...Ch. 6 - If two planets have the same mass, will they...Ch. 6 - True or false? Astronauts in satellites orbiting...Ch. 6 - True or false? If a rock is acted upon by a...Ch. 6 - On an icy road, you approach a curve that has the...Ch. 6 - You are riding on a roller coaster with a hill...
Ch. 6 - The moon is accelerating toward the earth. Does...Ch. 6 - A passenger in a car rounding a sharp curve feels...Ch. 6 - If the earth had twice its present mass, its...Ch. 6 - An astronaut is floating happily outside her...Ch. 6 - A frictional force f provides the centripetal...Ch. 6 - Two masses m and 2m are each forced to go around a...Ch. 6 - A stone of weight W is attached to a strong string...Ch. 6 - If a planet had twice the earths radius, but only...Ch. 6 - When a mass goes in a horizontal circle with speed...Ch. 6 - In the previous problem, if both the speed and the...Ch. 6 - Two 1.0 Kg point masses a distance D apart each...Ch. 6 - Two massless bags contain identical bricks, each...Ch. 6 - When two point masses are a distance D apart, each...Ch. 6 - If human beings ever travel to a planet whose mass...Ch. 6 - A racing car drives at constant speed around the...Ch. 6 - A stone with a mass of 0.80 kg is attached to one...Ch. 6 - Force on a skaters wrist. A 52 kg ice skater spins...Ch. 6 - A flat (unbanked) curve on a highway has a radius...Ch. 6 - The Giant Swing at a county fair consists of a...Ch. 6 - A small button placed on a horizontal rotating...Ch. 6 - Using only astronomical data from Appendix E,...Ch. 6 - A highway curve with radius 900.0 ft is to be...Ch. 6 - The Indy 500. The Indianapolis Speedway (home of...Ch. 6 - A bowling ball weighing 71.2 N is attached to the...Ch. 6 - A lead fishing weight of mass 0.2 kg is tied to a...Ch. 6 - A 50.0 kg stunt pilot who has been diving her...Ch. 6 - Effect on blood of walking. While a person is...Ch. 6 - Stay dry! You tie a cord to a pail of water, and...Ch. 6 - Stunt pilots and fighter pilots who fly at high...Ch. 6 - If two tiny identical spheres attract each other...Ch. 6 - What is the ratio of the suns gravitational pull...Ch. 6 - Rendezvous in space! A couple of astronauts agree...Ch. 6 - What is the ratio of the gravitational pull of the...Ch. 6 - A 2150 kg satellite used in a cellular telephone...Ch. 6 - At a distance N RE from the earths surface, where...Ch. 6 - Find the magnitude and direction of the net...Ch. 6 - How far from a very small 100 kg ball would a...Ch. 6 - Each mass in Figure 6.30 is 3.00 kg. Find the...Ch. 6 - An 8.00 kg point mass and a 15.0 kg point mass are...Ch. 6 - How many kilometers would you have to go above the...Ch. 6 - Your spaceship lands on an unknown planet. To...Ch. 6 - If an objects weight is W on the earth, what would...Ch. 6 - Huygens probe on Titan. In January 2005 the...Ch. 6 - The mass of the moon is about 1/81 the mass of the...Ch. 6 - Neutron stars, such as the one at the center of...Ch. 6 - The asteroid 243 Ida has a mass of about 4.0 1016...Ch. 6 - Prob. 33PCh. 6 - What is the period of revolution of a satellite...Ch. 6 - Prob. 35PCh. 6 - Planets beyond the solar system. On October 15,...Ch. 6 - Communications satellites. Communications...Ch. 6 - Prob. 38PCh. 6 - Apparent weightlessness in a satellite. You have...Ch. 6 - Baseball on Deimos! Deimos, a moon of Mars, is...Ch. 6 - International Space Station. The International...Ch. 6 - Artificial gravity. One way to create artificial...Ch. 6 - Shortest possible day. Consider the fact that an...Ch. 6 - Volcanoes on lo. Jupiters moon lo has active...Ch. 6 - You tie one end of 0.3-m-long spring to a 0.5 kg...Ch. 6 - An astronaut carefully measures the gravitational...Ch. 6 - Prob. 47GPCh. 6 - A 1125 kg car and a 2250 kg pickup truck approach...Ch. 6 - Exploring Europa. Europa, a satellite of Jupiter,...Ch. 6 - The star Rho1 Cancri is 57 light-years from the...Ch. 6 - A 4.00 kg block is attached to a vertical rod by...Ch. 6 - As your bus rounds a flat curve at constant speed...Ch. 6 - Artificial gravity in space stations. One problem...Ch. 6 - Based on these data, what is the most likely...Ch. 6 - How many times the acceleration due to gravity g...Ch. 6 - Exoplanets. As planets with a wide variety of...
Additional Science Textbook Solutions
Find more solutions based on key concepts
40. A 5.0-rn-diameter merry-go-round is initially turning with a
4.0 s period. It slows down and stops in 20 s...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
The following data were obtained from a disk-diffusion test. Antibiotic Zone of Inhibition A 15 mm B 0 mm c 7 m...
Microbiology: An Introduction
20. The tune-up specifications of a car call for the spark plugs to be tightened to a torque of 38 N · m. You p...
College Physics: A Strategic Approach (3rd Edition)
What name is given to the zone of greatest seismic activity?
Applications and Investigations in Earth Science (9th Edition)
WHAT IF? Suppose two plant populations exchange pollen and seeds. In one population, individuals of genotype AA...
Campbell Biology in Focus (2nd Edition)
The glycine cleavage system is a group of four enzymes that together catalyze the following reaction: glycine+T...
Organic Chemistry (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Suppose the gravitational acceleration at the surface of a certain moon A of Jupiter is 2 m/s2. Moon B has twice the mass and twice the radius of moon A. What is the gravitational acceleration at its surface? Neglect the gravitational acceleration due to Jupiter, (a) 8 m/s2 (b) 4 m/s2 (c) 2 m/s2 (d) 1 m/s2 (e) 0.5 m/s2arrow_forward(a) Find the magnitude of the gravitational force between a planet with mass 7.50 1024 kg and its moon, with mass 2.70 1022 kg, if the average distance between their centers is 2.80 108 m. (b) What is the acceleration of the moon towards the planet? (c) What is the acceleration of the planet towards the moon?arrow_forwardOn a planet whose radius is 1.2107m , the acceleration due to gravity is 18m/s2 . What is the mass of the planet?arrow_forward
- In Example 2.6, we considered a simple model for a rocket launched from the surface of the Earth. A better expression for the rockets position measured from the center of the Earth is given by y(t)=(R3/2+3g2Rt)2/3j where R is the radius of the Earth (6.38 106 m) and g is the constant acceleration of an object in free fall near the Earths surface (9.81 m/s2). a. Derive expressions for vy(t) and ay(t). b. Plot y(t), vy(t), and ay(t). (A spreadsheet program would be helpful.) c. When will the rocket be at y=4R? d. What are vy and ay when y=4R?arrow_forwardA space station, in the form of a wheel 120 m in diameter, rotates to provide an artificial gravity of 3.00 m/s2 for persons who walk around on the inner wall of the outer rim. Find the rate of the wheels rotation in revolutions per minute that will produce this effect.arrow_forwardTwo planets in circular orbits around a star have speed of v and 2v . (a) What is the ratio of the orbital radii of the planets? (b) What is the ratio of their periods?arrow_forward
- Let gM represent the difference in the gravitational fields produced by the Moon at the points on the Earths surface nearest to and farthest from the Moon. Find the fraction gM/g, where g is the Earths gravitational field. (This difference is responsible for the occurrence of the lunar tides on the Earth.)arrow_forwardThe mass of the Earth is approximately 5.98 1024 kg, and the mass of the Moon is approximately 7.35 1022 kg. The Moon and the Earth are separated by about 3.84 108 m. a. What is the magnitude of the gravitational force that the Moon exerts on the Earth? b. If Serena is on the Moon and her mass is 25 kg, what is the magnitude of the gravitational force on Serena due to the Moon? The radius of the Moon is approximately 1.74 106 m.arrow_forwardWhat is the orbital radius of an Earth satellite having a period of 1.00 h? (b) What is unreasonable about this result?arrow_forward
- (a) What is the acceleration due to gravity on the surface of the Moon? (b) On the surface of Mars? The mass of Mars is SW 6.4181023kg and its radius is 3.38106m .arrow_forwardThe acceleration due to gravity on the surface of a planet is three times as large as it is on the surface of Earth. The mass density of the planet is known to be twice that of Earth. What is the radius of this planet in terms of Earth’s radius?arrow_forwardA newly discovered planet X has a mass of 36.7 × 1023 kg and radius 2.47 × 106 m. What is g on this planet's surface, in m/s2?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Gravitational Force (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=pxp1Z91S5uQ;License: Standard YouTube License, CC-BY