Baseball on Deimos! Deimos, a moon of Mars, is about 12 km in diameter, with a mass of 2.0 × 1015 kg. Suppose you are stranded alone on Deimos and want to play a one-person game of baseball. You would be the pitcher, and you would be the batter! With what speed would you have to throw a baseball so that it would go into orbit and return to you so you could hit it? Do you think you could actually throw it at that speed?
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
College Physics (10th Edition)
Additional Science Textbook Solutions
Campbell Biology in Focus (2nd Edition)
Campbell Biology: Concepts & Connections (9th Edition)
Anatomy & Physiology (6th Edition)
Human Biology: Concepts and Current Issues (8th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Chemistry: Structure and Properties (2nd Edition)
- Suppose the gravitational acceleration at the surface of a certain moon A of Jupiter is 2 m/s2. Moon B has twice the mass and twice the radius of moon A. What is the gravitational acceleration at its surface? Neglect the gravitational acceleration due to Jupiter, (a) 8 m/s2 (b) 4 m/s2 (c) 2 m/s2 (d) 1 m/s2 (e) 0.5 m/s2arrow_forwardOne of your summer lunar space camp activities is to launch a 1170 kg rocket from the surface of the Moon. You are a serious space camper and you launch a serious rocket: it reaches an altitude of 215 km. What gain AU in gravitational potential energy does the launch accomplish? The mass and radius of the Moon are 7.36 x 1022 kg and 1740 km, respectively. AU = -3.63 x108 J Incorrectarrow_forwardProblem 5. Carousel that’s turning A carousel has two lanes of horses: an outer lane of radius 5.36 m and an inner lane of radius 3.78 m. When a ride starts, the carousel immediately starts rotating with some initial angular speed wo, and undergoes a constant angular acceleration a until it reaches its maximum angular speed, after which it rotates constantly at this angular speed. The carousel completes its first revolution in 23.0 s, then completes its second revolution after an additional 21.0s. At its maximum speed, the carousel completes one revolution every 14.0 s. During the ride, the horses also move up and down, and their vertical motion is independent of the angular speed of the carousel. The vertical displacement of each horse follows that of simple harmonic motion, with one up-and-down cycle lasting 3.50 s, and the height difference between each horse's highest point and lowest point being 20.3 cm. All horses start at their lowest point at the beginning of the ride. (a) Find…arrow_forward
- Part A Comets travel around the sun in elliptical orbits with large eccentricities. If a comet has speed 2.1×104 m/s when at a distance of 2.6x1011 m from the center of the sun, what is its speed when at a distance of 4.0×1010 m. Express your answer in meters per second. Πνα ΑΣΦ m/sarrow_forwardTwo spherical asteroids have the same radius R. Asteroid 1 has mass M and asteroid 2 has mass 2M. The two asteroids are released from rest with distance 10R between their centers. What is the speed of each asteroid just before they collide? Hint: You will need to use two conservation laws.arrow_forwardJupiter is about 300 times more massive than Earth. One might quickly conclude that an object on the surface of Jupiter would weigh 300 times more than on the surface of the Earth. For instance, one might expect a person who weighs 500 N on Earth would weigh 150000 N on the surface of Jupiter. Yet this is not the case. In fact, a 500-N person on Earth weighs about 1500 N on the surface of Jupiter. Explain how this can be.arrow_forward
- Some of the most spectacular objects in the universe are fairly small: neutron stars are spheres with a diameter that's about 10km (they are remnants of old stars). Their spectacular nature is indicated by the fact that they are about as massive as the sun, i.e. 2 x 1030kg. What is the gravitational acceleration on the surface of such an object? Express your result as a multiple of g.arrow_forwardIn recent years, scientists have discovered hundreds of planets orbiting other stars. Some of these planets are in orbits that are similar to that of earth, which orbits the sun (MsunMsun = 1.99 ×× 103030 kgkg) at a distance of 1.50 ×× 101111 mm, called 1 astronomical unit (1 auau). Others have extreme orbits that are much different from anything in our solar system. The following problem relates to one of these planets that follows circular orbit around its star. WASP-32b orbits with a period of only 2.7 days a star with a mass that is 1.1 times that of the sun. How many au from the star is this planet? Assume the orbital period of earth is 365 days. Express your answer in astronomical units.arrow_forwardAssume that planet A has radius RA and mass MA, and planet B has radius Rg and mass Mg. Let ga and gg are the accelerations due to gravity at their surfaces, respectively. If MA = Mg, and RA = 2Rg The ratio (g,/Ba) is: A. 1 B. 2 C. 4 D. 0.5 E. 0.25arrow_forward
- One dimension. In the figure, two point particles are fixed on an x axis separated by distance d. Particle A has mass ma and particle B has mass 9.00 mA. A third particle C, of mass 90.0 ma, is to be placed on the x axis and near particles A and B. In terms of distance d, at what x coordinate should C be placed so that the net gravitational force on particle A from particles B and C is zero? B. Number Units *d Use correct number of significant digits; the tolerance is +/-2%arrow_forwardAnswer question Carrow_forwardll Problem Three. Consider two planets: Neptune with a mass of m, × 1.02×10% kg and Uranus with a mass of m, = 8.68 x10*kg. The planets are a distance of d =1.62×10°km apart. Let Neptune be at the origin of a coordinate system, and Uranus be along the positive x-axis. (See the diagram below.) m2 X Find the location "x" where a test particle would accelerate toward the two planets with a force that is half due to Neptune, and half due to Uranus. Give an answer in 1010 km. 7.) (A) 5.6 B) 3.6 (C) 9.4 (D) 2.1 (E) 8.9 Consider if a large asteroid of mass m =1.00×10²ºkg is a distance d above m. Find the magnitude of the gravitational force the asteroid experiences due to both planets. Give an answer in units of 1010 N. 8.) (A) 35 (B) 83 (C) 71 (D) 53 (E) 98arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning