College Physics (10th Edition)
10th Edition
ISBN: 9780321902788
Author: Hugh D. Young, Philip W. Adams, Raymond Joseph Chastain
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 6, Problem 40P
Baseball on Deimos! Deimos, a moon of Mars, is about 12 km in diameter, with a mass of 2.0 × 1015 kg. Suppose you are stranded alone on Deimos and want to play a one-person game of baseball. You would be the pitcher, and you would be the batter! With what speed would you have to throw a baseball so that it would go into orbit and return to you so you could hit it? Do you think you could actually throw it at that speed?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Deimos, a moon of Mars, is about 12 km in diameter with mass 2.0 × 10¹5 kg.
Suppose you are stranded alone on Deimos and want to play a one-person game of
baseball. You would be the pitcher, and you would be the batter!
a. With what speed would you have to throw a baseball so that it would go into a
circular orbit just above the surface and return to you so you could hit it? Do you
think you could actually throw it at this speed?
b. How long (in hours) after throwing the ball should you be ready to hit it? Would
this be an action-packed baseball game?
hi. can you solve it with an explanation? thanks
A satellite is traveling around a planet in a circular orbit with radius R. It moves in a constant speed of v = 1.1 × 104 m/s. The mass of the planet is M = 6.04 × 1024 kg. The mass of the satellite is m = 1.2 × 103 kg.
a)Enter an expression for the radius R in terms of G, M and v.
b)Calculate the value of R in meters.
c)Enter an expression for the gravitational potential energy PE in terms of G, M, m, and R.
Chapter 6 Solutions
College Physics (10th Edition)
Ch. 6 - If there is a net force on a particle in uniform...Ch. 6 - As a car rounds a banked circular curve at...Ch. 6 - A student wrote, The reason an apple falls...Ch. 6 - Non-physicists often ask questions such as What...Ch. 6 - During an actual interview for a college teaching...Ch. 6 - If two planets have the same mass, will they...Ch. 6 - True or false? Astronauts in satellites orbiting...Ch. 6 - True or false? If a rock is acted upon by a...Ch. 6 - On an icy road, you approach a curve that has the...Ch. 6 - You are riding on a roller coaster with a hill...
Ch. 6 - The moon is accelerating toward the earth. Does...Ch. 6 - A passenger in a car rounding a sharp curve feels...Ch. 6 - If the earth had twice its present mass, its...Ch. 6 - An astronaut is floating happily outside her...Ch. 6 - A frictional force f provides the centripetal...Ch. 6 - Two masses m and 2m are each forced to go around a...Ch. 6 - A stone of weight W is attached to a strong string...Ch. 6 - If a planet had twice the earths radius, but only...Ch. 6 - When a mass goes in a horizontal circle with speed...Ch. 6 - In the previous problem, if both the speed and the...Ch. 6 - Two 1.0 Kg point masses a distance D apart each...Ch. 6 - Two massless bags contain identical bricks, each...Ch. 6 - When two point masses are a distance D apart, each...Ch. 6 - If human beings ever travel to a planet whose mass...Ch. 6 - A racing car drives at constant speed around the...Ch. 6 - A stone with a mass of 0.80 kg is attached to one...Ch. 6 - Force on a skaters wrist. A 52 kg ice skater spins...Ch. 6 - A flat (unbanked) curve on a highway has a radius...Ch. 6 - The Giant Swing at a county fair consists of a...Ch. 6 - A small button placed on a horizontal rotating...Ch. 6 - Using only astronomical data from Appendix E,...Ch. 6 - A highway curve with radius 900.0 ft is to be...Ch. 6 - The Indy 500. The Indianapolis Speedway (home of...Ch. 6 - A bowling ball weighing 71.2 N is attached to the...Ch. 6 - A lead fishing weight of mass 0.2 kg is tied to a...Ch. 6 - A 50.0 kg stunt pilot who has been diving her...Ch. 6 - Effect on blood of walking. While a person is...Ch. 6 - Stay dry! You tie a cord to a pail of water, and...Ch. 6 - Stunt pilots and fighter pilots who fly at high...Ch. 6 - If two tiny identical spheres attract each other...Ch. 6 - What is the ratio of the suns gravitational pull...Ch. 6 - Rendezvous in space! A couple of astronauts agree...Ch. 6 - What is the ratio of the gravitational pull of the...Ch. 6 - A 2150 kg satellite used in a cellular telephone...Ch. 6 - At a distance N RE from the earths surface, where...Ch. 6 - Find the magnitude and direction of the net...Ch. 6 - How far from a very small 100 kg ball would a...Ch. 6 - Each mass in Figure 6.30 is 3.00 kg. Find the...Ch. 6 - An 8.00 kg point mass and a 15.0 kg point mass are...Ch. 6 - How many kilometers would you have to go above the...Ch. 6 - Your spaceship lands on an unknown planet. To...Ch. 6 - If an objects weight is W on the earth, what would...Ch. 6 - Huygens probe on Titan. In January 2005 the...Ch. 6 - The mass of the moon is about 1/81 the mass of the...Ch. 6 - Neutron stars, such as the one at the center of...Ch. 6 - The asteroid 243 Ida has a mass of about 4.0 1016...Ch. 6 - Prob. 33PCh. 6 - What is the period of revolution of a satellite...Ch. 6 - Prob. 35PCh. 6 - Planets beyond the solar system. On October 15,...Ch. 6 - Communications satellites. Communications...Ch. 6 - Prob. 38PCh. 6 - Apparent weightlessness in a satellite. You have...Ch. 6 - Baseball on Deimos! Deimos, a moon of Mars, is...Ch. 6 - International Space Station. The International...Ch. 6 - Artificial gravity. One way to create artificial...Ch. 6 - Shortest possible day. Consider the fact that an...Ch. 6 - Volcanoes on lo. Jupiters moon lo has active...Ch. 6 - You tie one end of 0.3-m-long spring to a 0.5 kg...Ch. 6 - An astronaut carefully measures the gravitational...Ch. 6 - Prob. 47GPCh. 6 - A 1125 kg car and a 2250 kg pickup truck approach...Ch. 6 - Exploring Europa. Europa, a satellite of Jupiter,...Ch. 6 - The star Rho1 Cancri is 57 light-years from the...Ch. 6 - A 4.00 kg block is attached to a vertical rod by...Ch. 6 - As your bus rounds a flat curve at constant speed...Ch. 6 - Artificial gravity in space stations. One problem...Ch. 6 - Based on these data, what is the most likely...Ch. 6 - How many times the acceleration due to gravity g...Ch. 6 - Exoplanets. As planets with a wide variety of...
Additional Science Textbook Solutions
Find more solutions based on key concepts
13. A supply plane needs to drop a package of food to scientists working on a glacier in Greenland. The plane f...
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
A spherical particle falling at a terminal speed in a liquid must have the gravitational force balanced by the ...
College Physics
Two closely spaced square conducting plates measure 10 cm on a side. The electric-field energy density between ...
Essential University Physics (3rd Edition)
34.94 BIO What Is the Smallest Thing We Can See? The smallest object we can resolve with our eye is limited by ...
University Physics (14th Edition)
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Suppose the gravitational acceleration at the surface of a certain moon A of Jupiter is 2 m/s2. Moon B has twice the mass and twice the radius of moon A. What is the gravitational acceleration at its surface? Neglect the gravitational acceleration due to Jupiter, (a) 8 m/s2 (b) 4 m/s2 (c) 2 m/s2 (d) 1 m/s2 (e) 0.5 m/s2arrow_forwardOne of your summer lunar space camp activities is to launch a 1170 kg rocket from the surface of the Moon. You are a serious space camper and you launch a serious rocket: it reaches an altitude of 215 km. What gain AU in gravitational potential energy does the launch accomplish? The mass and radius of the Moon are 7.36 x 1022 kg and 1740 km, respectively. AU = -3.63 x108 J Incorrectarrow_forwardProblem 5. Carousel that’s turning A carousel has two lanes of horses: an outer lane of radius 5.36 m and an inner lane of radius 3.78 m. When a ride starts, the carousel immediately starts rotating with some initial angular speed wo, and undergoes a constant angular acceleration a until it reaches its maximum angular speed, after which it rotates constantly at this angular speed. The carousel completes its first revolution in 23.0 s, then completes its second revolution after an additional 21.0s. At its maximum speed, the carousel completes one revolution every 14.0 s. During the ride, the horses also move up and down, and their vertical motion is independent of the angular speed of the carousel. The vertical displacement of each horse follows that of simple harmonic motion, with one up-and-down cycle lasting 3.50 s, and the height difference between each horse's highest point and lowest point being 20.3 cm. All horses start at their lowest point at the beginning of the ride. (a) Find…arrow_forward
- Part A Comets travel around the sun in elliptical orbits with large eccentricities. If a comet has speed 2.1×104 m/s when at a distance of 2.6x1011 m from the center of the sun, what is its speed when at a distance of 4.0×1010 m. Express your answer in meters per second. Πνα ΑΣΦ m/sarrow_forwardJupiter is about 300 times more massive than Earth. One might quickly conclude that an object on the surface of Jupiter would weigh 300 times more than on the surface of the Earth. For instance, one might expect a person who weighs 500 N on Earth would weigh 150000 N on the surface of Jupiter. Yet this is not the case. In fact, a 500-N person on Earth weighs about 1500 N on the surface of Jupiter. Explain how this can be.arrow_forwardDeimos, a moon of Mars, is about 12 km in diameter with mass 1.5 * 10^15 kg. Suppose you are stranded alone on Deimos and want to play a one-person game of baseball. You would be the pitcher, and you would be the batter! (a) With what speed would you have to throw a baseball so that it would go into a circular orbit just above the surface and return to you so you could hit it? Do you think you could actually throw it at this speed? (b) How long (in hours) after throwing the ball should you be ready to hit it? Would this be an action-packed baseball game?arrow_forward
- Some of the most spectacular objects in the universe are fairly small: neutron stars are spheres with a diameter that's about 10km (they are remnants of old stars). Their spectacular nature is indicated by the fact that they are about as massive as the sun, i.e. 2 x 1030kg. What is the gravitational acceleration on the surface of such an object? Express your result as a multiple of g.arrow_forwardIn recent years, scientists have discovered hundreds of planets orbiting other stars. Some of these planets are in orbits that are similar to that of earth, which orbits the sun (MsunMsun = 1.99 ×× 103030 kgkg) at a distance of 1.50 ×× 101111 mm, called 1 astronomical unit (1 auau). Others have extreme orbits that are much different from anything in our solar system. The following problem relates to one of these planets that follows circular orbit around its star. WASP-32b orbits with a period of only 2.7 days a star with a mass that is 1.1 times that of the sun. How many au from the star is this planet? Assume the orbital period of earth is 365 days. Express your answer in astronomical units.arrow_forwardAssume that planet A has radius RA and mass MA, and planet B has radius Rg and mass Mg. Let ga and gg are the accelerations due to gravity at their surfaces, respectively. If MA = Mg, and RA = 2Rg The ratio (g,/Ba) is: A. 1 B. 2 C. 4 D. 0.5 E. 0.25arrow_forward
- One dimension. In the figure, two point particles are fixed on an x axis separated by distance d. Particle A has mass ma and particle B has mass 9.00 mA. A third particle C, of mass 90.0 ma, is to be placed on the x axis and near particles A and B. In terms of distance d, at what x coordinate should C be placed so that the net gravitational force on particle A from particles B and C is zero? B. Number Units *d Use correct number of significant digits; the tolerance is +/-2%arrow_forwardAnswer question Carrow_forwardExoplanet Taphao Keow is a Jupiter-sized planet orbiting another star. It has a mass of approximately 1×10+27[kg]. Its actual radius is not currently known, but we do know that the radius of Jupiter is 7×107[m]. Question: If Taphao Keow had a radius that was the same radius as Jupiter, what would it's local surface gravitational acceleration be? O 266 [m/s2] 124 [m/s²] 70 [m/s²] O 24 [m/s²] O 14 [m/s²] It would have a gravitational acceleration far larger than any of the other answers (many orders of magnitude larger) It would have a gravitational acceleration far smaller than any of the other answers (many orders of magnitude larger)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY