College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A copper block with mass m = 200 g, is at rest on a glass surface, where the plane makes an angle θθ = 45∘. Assume that the glass surface is frictionless. Calculate the acceleration of the copper block when it is released from rest. Express your result in m/s2.
Using the information presented calculate the force acting on the mass, m = 200 g, just as it is released from the top of the inclined plane, at y = 8.48 m. Express your answer in Newtons.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Computation. A 169-N box sits in a wagon at rest on horizontal ground. A child walks up and pulls horizontally on the wagon, giving it an acceleration of 8 m/s². Calculate the resulting magnitude f of the friction force acting on the box if us =0.81 and μk=0.43 between the box and the wagon. [Hint: As part of your solution, check to see if the box experiences static or kinetic friction.] f = N Record your numerical answer below, assuming three significant figures. OL Den @ 10:59 PM 10/18/2022 1arrow_forwardA drag chute must be designed to reduce the speed of a 1171 kg dragster from 342 km/hr to 80 km/hr in 4 seconds. Assume that the drag force is proportional to the velocity (kv). a) What value of the drag coefficient k is needed to accomplish this? kg · s? (Leave an exact answer.) m2 k = b) How far (in meters) will the dragster travel in the 4-sec interval? d = meters. (Round to the nearest meter) Question Help: O Message instructor Submit Questionarrow_forwardA piano has been pushed to the top of the ramp at the back of a moving van. The workers think it is safe, but as they walk away, it begins to roll down the ramp. Neglect the friction between the piano and the ramp. If the back of the truck is 1.5 mm above the ground and the ramp is inclined at 26 ∘∘ , how much time do the workers have to get to the piano before it reaches the bottom of the ramp?arrow_forward
- A cart with mass 15.7 kg is intitally at rest. You get it moving by pushing on the cart at an angle of 0 = 37° as shown above. The magnitude of your force as a function of time is given by: Fyc(t) = Foe-bt, where b = 0.55 s-1 and Fo = 138.1 N. You can assume that the wheels roll perfectly on the ground. What is the speed of the cart when t = 3.3 s? Don't Know Where to Start? ... A Hint About N2L A Hint About the Proces ...... ........................ Vf = 10.25m/sarrow_forwardShown to the right is a block of mass m resting on a frictionless ramp inclined at an angle to the horizontal. The block is held by a spring that is stretched a distance d after the block is attached to it. E k= e wwwwww ▷ A Write an equation for the force constant of the spring in terms of the variables from the problem statement (m, 0, and d). Use g for the gravitational constant.arrow_forwardHelparrow_forward
- Your answer is partially correct. A 1.3 kg box is initially at rest on a horizontal surface when at t = 0 a horizontal force = (1.8t)î N = (with t in seconds) is applied to the box. The acceleration of the box as a function of time t is given by a = 0 for 0 ≤ t ≤ 2.6s and a (1.38t - 2.1)î m/s² for t > 2.6 s. (a) What is the coefficient of static friction between the box and the surface? (b) What is the coefficient of kinetic friction between the box and the surface? (a) Number 0.367 (b) Number Save for Later i Units Units This answer has no units ✓arrow_forwardA golf ball (m = 67.8 g) is hit by a clab that makes an angle of 25.1° with the horizontal. The ball lands 222 m away on a flat fairway. The acceleration of gravity is 9.8 m/s2. If the golf club and ball are in contact for 3.34 ms, what is the average force of impact? Neglect air resistance. Answer in units of N.arrow_forwardAt t = 0, a cart of mass m = 5 kg starts rolling down an incline, making an angle α = 20o with the horizontal. Initially the cart rolls down with no friction, but after traveling a distance of ∆ = 10 m it encounters a rough surface, where the coefficient of friction is k = 0.45. Find the acceleration of the cart along the incline (positive direction is downhill) after it encounters the rough surface. A.9.8 m/s2 B.9.2 m/s2 C.7.7 m/s2 D.3.6 m/s2 E.3.4 m/s2 F.-0.8 m/s2arrow_forward
- A 4.4 kg block located on a horizontal floor is pulled by a cord that exerts a force F = 10 N at an angle theta = 35 degrees above the horizontal, as shown. The floor has a coefficient of kinetic friction µk = 0.1. What is the magnitude of the acceleration [m/s2] of the block? What is the horizontal speed [m/s] of the block 4.4 seconds after it starts moving?arrow_forwardThe small mass m = 3.5 kg and big mass M = 5.8 kg are initially at rest with the small mass at the top of the inclined surface. The small mass will start sliding down the large mass M without friction. The large mass itself is also free to move on a frictionless horizontal surface. Given that h = 4.6 meter, what will the magnitude of the velocity of the mass M when it reaches the horizontal surface? Take g =9.81 m/s? Provide your answer with 2 decimal places. h Marrow_forwardDetermine the force Q-> when the block moves with constant velocity. Express your answer in vector form.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON