Concept explainers
Water enters a hydraulic turbine through a 30-cm-diameter pipe at a rate of 0.6 m3/s and exits
through a 25-cm-diameter pipe. The pressure drop in the turbine is measured by a mercury manometer to be 1.2 in. For a combined turbine-generator efficiency of 83 percent determine the net electric power output. Disregard the effect of the kinetic energy correction factors.
The net electric power output.
Answer to Problem 84P
The net electric power output is
Explanation of Solution
Given information:
The initial diameter of the pipe is
Write the expression for the initial velocity of the water.
Here, the initial diameter of the pipe is
Write the expression for the final velocity of the water.
Here, the final diameter of the pipe is
Write the expression for the pressure drop.
Here, the density of the mercury and water is
Write the expression for the turbine head using the Bernoulli's equation.
Here, the head loss is
Write the expression for the net electric power output.
Here, the turbine and generator efficiency is
Calculation:
Draw the diagram for a tank fitted with orifice.
Figure-(2)
Substitute
Substitute
Substitute
Here, the gravitational constant is
Here, the density of the water is
Substitute
Substitute
Conclusion:
Thus, the net electric power output is
Want to see more full solutions like this?
Chapter 5 Solutions
Fluid Mechanics: Fundamentals and Applications
- 1- Is there an acceleration for fluid particles in a steady flow? Explain your answer by sketch if applicable. 2- Water enters a hydraulic turbine through a 30 cm diameter pipe at a rate of 0.6 m/s and exits through a 25 cm diameter pipe. The pressure drop in the turbine is measured by a mercury manometer to be 1.2 m 1g. For a combined turbine-generator efficiency of 83 percent, determine the net electric power output. Disregard the effect of the kinetic energy correction factors. 30 cm 25 cin Turbine É Geacrator AP= 1.2m Hgarrow_forward6. Water enters a hydraulic turbine through a 25-cm diameter pipe at a rate of 0.6 m³/s and exits through a 30-cm diameter pipe. The pressure drop in the turbine is measured by a mercury manometer to be 1.3 m. For a combined turbine-generator efficiency of 80 percent, determine (a) the net electric power output (b) and pressure difference across the turbine. Disregard the effect of the kinetic energy correction factors.arrow_forwardA pressurized tank of water has a 10-cm-diameter orifice at the bottom, where water discharges to the atmosphere. The water level is 3 m above the outlet. The tank air pressure above the water level is 300 kPa (absolute) while the atmospheric pressure is 100 kPa. Neglecting frictional effects, determine the initial discharge rate of water from the tankarrow_forward
- Water enters a hydraulic turbine through a 30 cm diameter pipe at a rate of 0.6 m3/s and exits through a 25 cm diameter pipe as shown in the Figure. The pressure drop in the turbine is measured by a mercury manometer to be 1.2 m. For a combined turbine– generator efficiency of 83 percent, determine the net electric power output. Take the kinetic energy correction factor to be 1.05. (Density of water and mercury can be taken as per the standards)arrow_forwardWater enters a hydraulic turbine through a 30 cm diameter tube at a rate of 0.6 m3/s and leaves through a 25 cm diameter tube. cm in diameter With a mercury manometer, the pressure drop across the turbine is measured to be 1.2 m For a combined efficiency (turbine-generator) of 83%, determine the net electrical power output. discard the effect of the kinetic energy correction factors.arrow_forwardWhen water is pumped into a water tank 20 m above a lake with a flow rate of 70 l/s, 20.4kW of electrical power is consumed. Determine the efficiency of the pump-motor group by ignoring the friction losses in the pipes and the change in kinetic energy. Determine the pressure difference between the inlet and outlet of the pump.arrow_forward
- A pump is to deliver 80 gpm of water having specific volume of 1.0164x10-3 m3/kg at a temperature of 140°F and discharge pressure of 150 psig. Suction pressure indicates 2 in.of mercury vacuum. The diameter of suction and discharge pipes are 5 in. and 4 in., respectively. The pump has an efficiency of 70%, while the motor efficiency is 80%. Determine the power input to drive the motor in horsepower.arrow_forwardQ2// Water enters a hydraulic 4 turbine through a 26 cm diameter pipe at a rate of 1.2 m^3/s and exits through a 21 cm diameter pipe. The pressure drop in the turbine is measured by a mercury manometer to be 2 m. For a combined turbine-generator efficiency of 91%. determine the net electric power output. Disregard the effect of the kinetic energy correction factors. 26 cm Turbine Generator 21 cm AP =2 m Hgarrow_forwardA hydraulic turbine has 50 m of head available at a flow rate of 1.30 m3/s, and its overall turbine–generator efficiency is 78 percent. Determine the electric power output of this turbine.arrow_forward
- A certain 15-Kw pump running at 1600 rpm has an inlet diameter of 20cm and the discharge line is 12 cm in diameter. The output from th pump is 2800 liters/min of 20C and the centerline of the pump discharge is 1.5 meter above the centerline of the intake pipe. Determine the efficiency of pump. Please show complete solutions and formulas used. Show schematic diagram too.arrow_forwardA pump takes water at 60°F from a large reservoir and delivers it to the bottom of an open elevated tank 25 ft above the reservoir surface through a 3 inch ID pipe. The inlet to the pump is located 10 ft below the water surface, and the water level in the tank is constant at 160 ft above the reservoir surface. The pump delivers 150 gal/min. If the total loss of energy due to friction in the piping system is 35 ft·lbf/lb. The pump and its motor have an overall efficiency of 55 %. i. Determine Delta Z (Z2 - Z1) in ft. ii. What is the actual shaft work needed for this particular mass flow rate in (ft-lbf)/s. iii. What is the mass flow rate of the water in lbm/s?arrow_forwardA pump takes water at 60°F from a large reservoir and delivers it to the bottom of an open elevated tank 25 ft above the reservoir surface through a 3 inch ID pipe. The inlet to the pump is located 10 ft below the water surface, and the water level in the tank is constant at 160 ft above the reservoir surface. The pump delivers 150 gal/min. If the total loss of energy due to friction in the piping system is 35 ft·lbf/lb. The pump and its motor have an overall efficiency of 55 %. i.Let us set our first point at the surface of the large reservoir, and the second point at the surface of the open elevated tank. Determine the velocity of the water at point 1 in ft/s. ii.What is the density of water at the conditions stated in lb/ft3? iii.If 1 horsepower is equivalent to 500 (ft-lbf)/s, the pump should be able to supply how much hp?arrow_forward
- Refrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage Learning