Principles of General Chemistry
Principles of General Chemistry
3rd Edition
ISBN: 9780073402697
Author: SILBERBERG, Martin S.
Publisher: McGraw-Hill College
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 5, Problem 5.92P
Interpretation Introduction

Interpretation:

The number in metric tons (t) should be calculated for each gas emitted per year.

Concept Introduction:

Ideal gas law equation is shown as:

  PV= nRT

Where,

P = Pressure

V = Volume

n = Number of moles

R = Universal gas constant

T = Temperature

Rearrange the above formula in terms of number of moles:

  n=PVRT

Number of moles is defined as the ratio of mass to the molar mass.

The mathematical expression is given as:

  Number of moles =MassMolar mass

Mole fraction is defined as the ratio of number of moles of a gas to the total number of moles of gas.

The mathematical expression is given as:

  Mole fraction = Number of moles of gasTotal number of moles of gases

Expert Solution & Answer
Check Mark

Answer to Problem 5.92P

Mass of CO2 per year = 481.8 tons per year

Mass of CO per year = 9.136 tons per year

Mass of H2O per year = 149.285 tons per year

Mass of SO2 per year = 169.85 tons per year

Mass of S2 per year = 0.43 tons per year

Mass of HCl per year = 0.652 tons per year

Mass of H2 per year = 0.212 tons per year

Mass of H2S per year = 0.229 tons per year

Explanation of Solution

Given information:

Hawaiian volcano Kilauea emits an average of 1.5×103 m3 ofa gas each day.

Temperature = 298 K

Pressure = 1.00 atm

Mole fractions: 0.4896 CO2 , 0.0146 CO , 0.3710 H2O , 0.1185 SO2 , 0.0003 S2 , 0.0047 H2 , 0.0008 HCl , 0.0003 H2S

The number of moles is calculated as:

  n=PVRT

Volume in L = 1.5×106L

Put the values,

  n=(1 atm)×(1.5×106L)0.0821 atm L/mol K×298 K

   = 6.13×104 mol

Now, number of moles of carbon dioxide is calculated as:

  Number of moles of CO2 = Mole fraction×total moles of gases

  = 0.4896×6.13×104 mol

   = 3.00×104 moles

Molar mass of CO2 = 44 g/mole

Molar mass of CO2 in kg = 44×103 kg/mole (1 kg = 1000 g)

Mass of CO2 = Moles of CO2×molar mass of CO2

   = 3.00×104 moles×44×103 kg/mole

   = 1320 kg

Since, 1 kg = 0.001 ton

Thus,

Mass of CO2 = 1320 kg×1 ton1000 kg

   = 1.32 tons each day

Mass of CO2 per year = 1.32×365 per year

   = 481.8 tons per year

Number of moles of CO is calculated as:

  Number of moles of CO = Mole fraction×total moles of gases

  = 0.0146×6.13×104 mol

   = 0.0894×104 mole

Molar mass of CO = 28 g/mole

Molar mass of CO in kg = 28×103 kg/mole (1 kg = 1000 g)

Mass of CO = Moles of CO×molar mass of CO

   = 0.0894×104 mole×28×103 kg/mole

   = 25.032 kg

Since, 1 kg = 0.001 ton

Thus,

Mass of CO = 25.032 kg×1 ton1000 kg

   = 0.025032 tons each day

Mass of CO per year = 0.025032×365 per year

   = 9.136 tons per year

Number of moles of H2O is calculated as:

  Number of moles of H2O = Mole fraction×total moles of gases

  = 0.3710×6.13×104 mol

   = 2.274×104 mole

Molar mass of H2O = 18 g/mole

Molar mass of H2O in kg = 18×103 kg/mole (1 kg = 1000 g)

Mass of H2O = Moles of H2O×molar mass of H2O

   = 2.274×104 mole×18×103 kg/mole

   = 409 kg

Since, 1 kg = 0.001 ton

Thus,

Mass of H2O = 409 kg×1 ton1000 kg

   = 0.409 tons each day

Mass of H2O per year = 0.409 ×365 per year

   = 149.285 tons per year

Number of moles of SO2 is calculated as:

  Number of moles of SO2 = Mole fraction×total moles of gases

  = 0.1185×6.13×104 mol

   = 0.7264×104 mole

Molar mass of SO2 = 64.06 g/mole

Molar mass of SO2 in kg = 64.06×103 kg/mole (1 kg = 1000 g)

Mass of SO2 = Moles of SO2×molar mass of SO2

   = 0.7264×104 mole×64.06×103 kg/mole

   = 465.3 kg

Since, 1 kg = 0.001 ton

Thus,

Mass of SO2 = 465.3 kg×1 ton1000 kg

   = 0.465 tons each day

Mass of SO2 per year = 0.465 ×365 per year

   = 169.85 tons per year

Number of moles of S2 is calculated as:

  Number of moles of S2 = Mole fraction×total moles of gases

  = 0.0003×6.13×104 mol

   = 0.00184×104 mole

Molar mass of S2 = 64.12 g/mole

Molar mass of S2 in kg = 64.12×103 kg/mole (1 kg = 1000 g)

Mass of S2 = Moles of S2×molar mass of S2

   = 0.00184×104 mole×64.12×103 kg/mole

   = 1.18 kg

Since, 1 kg = 0.001 ton

Thus,

Mass of S2 = 1.18 kg×1 ton1000 kg

   = 0.00118 tons each day

Mass of S2 per year = 0.00118 ×365 per year

   = 0.43 tons per year

Number of moles of H2 is calculated as:

  Number of moles of H2= Mole fraction×total moles of gases

  = 0.0047×6.13×104 mol

   = 0.0288×104 mole

Molar mass of H2 = 2.016 g/mole

Molar mass of H2 in kg = 2.016×103 kg/mole (1 kg = 1000 g)

Mass of H2 = Moles of H2×molar mass of H2

   = 0.0288×104 mole×2.016×103 kg/mole

   = 0.58 kg

Since, 1 kg = 0.001 ton

Thus,

Mass of H2 = 0.58 kg×1 ton1000 kg

   = 0.00058 tons each day

Mass of H2 per year = 0.00058 ×365 per year

   = 0.212 tons per year

Number of moles of HCl is calculated as:

  Number of moles of HCl= Mole fraction×total moles of gases

  = 0.0008×6.13×104 mol

   = 0.0049×104 mole

Molar mass of HCl = 36.458 g/mole

Molar mass of HCl in kg = 36.458×103 kg/mole (1 kg = 1000 g)

Mass of HCl = Moles of HCl×molar mass of HCl

   = 0.0049×104 mole×36.458×103 kg/mole

   = 1.786 kg

Since, 1 kg = 0.001 ton

Thus,

Mass of HCl = 1.786 kg×1 ton1000 kg

   = 0.001786 tons each day

Mass of HCl per year = 0.001786 ×365 per year

   = 0.652 tons per year

Number of moles of H2S is calculated as:

  Number of moles of H2S= Mole fraction×total moles of gases

  = 0.0003×6.13×104 mol

   = 0.00184×104 mole

Molar mass of H2S = 34.076 g/mole

Molar mass of H2S in kg = 34.076×103 kg/mole (1 kg = 1000 g)

Mass of H2S = Moles of H2S×molar mass of H2S

   = 0.00184×104 mole×34.076×103 kg/mole

   = 0.627 kg

Since, 1 kg = 0.001 ton

Thus,

Mass of H2S = 0.627 kg×1 ton1000 kg

   = 0.000627 tons each day

Mass of H2S per year = 0.000627  ×365 per year

   = 0.229 tons per year

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 5 Solutions

Principles of General Chemistry

Ch. 5 - Prob. 5.11PCh. 5 - Prob. 5.12PCh. 5 - Each of the following processes caused the gas...Ch. 5 - What is the effect of the following on the volume...Ch. 5 - What is the effect of the following on the volume...Ch. 5 - Prob. 5.16PCh. 5 - Prob. 5.17PCh. 5 - Prob. 5.18PCh. 5 - Prob. 5.19PCh. 5 - Prob. 5.20PCh. 5 - If 1.4710-3mol of argon occupies a 75.0-mL...Ch. 5 - Prob. 5.22PCh. 5 - A 75.0-g sample of dinitrogen monoxide is confined...Ch. 5 - Prob. 5.24PCh. 5 - Prob. 5.25PCh. 5 - Prob. 5.26PCh. 5 - Prob. 5.27PCh. 5 - Prob. 5.28PCh. 5 - Prob. 5.29PCh. 5 - Prob. 5.30PCh. 5 - Prob. 5.31PCh. 5 - Prob. 5.32PCh. 5 - The density of a noble gas is 2.71g/L at 3.00 atm...Ch. 5 - Prob. 5.34PCh. 5 - When an evacuated 63.8-mL glass bulb is tilled...Ch. 5 - After 0.600 L of Ar at 1.20 atm and 227oC is mixed...Ch. 5 - A 355-mL container holds 0.146 g of Ne and an...Ch. 5 - How many grams of phosphorus react with 35.5 L of...Ch. 5 - Prob. 5.39PCh. 5 - Prob. 5.40PCh. 5 - Prob. 5.41PCh. 5 - Prob. 5.42PCh. 5 - How many liters of hydrogen gas are collected over...Ch. 5 - Prob. 5.44PCh. 5 - Prob. 5.45PCh. 5 - Prob. 5.46PCh. 5 - Prob. 5.47PCh. 5 - Prob. 5.48PCh. 5 - Prob. 5.49PCh. 5 - Prob. 5.50PCh. 5 - Prob. 5.51PCh. 5 - Prob. 5.52PCh. 5 - Prob. 5.53PCh. 5 - Prob. 5.54PCh. 5 - Prob. 5.55PCh. 5 - Prob. 5.56PCh. 5 - Prob. 5.57PCh. 5 - The graph below shows the distribution of...Ch. 5 - Prob. 5.59PCh. 5 - Prob. 5.60PCh. 5 - White phosphorus melts and then vaporizes at high...Ch. 5 - Helium (He) is the lightest noble gas component of...Ch. 5 - Prob. 5.63PCh. 5 - Prob. 5.64PCh. 5 - Prob. 5.65PCh. 5 - Prob. 5.66PCh. 5 - Does SF6(boilingpoint=16oCat1atm) behave more...Ch. 5 - Hemoglobin is the protein that transports O2...Ch. 5 - A baker uses sodium hydrogen carbonate (baking...Ch. 5 - Prob. 5.70PCh. 5 - Prob. 5.71PCh. 5 - Prob. 5.72PCh. 5 - Prob. 5.73PCh. 5 - Prob. 5.74PCh. 5 - Prob. 5.75PCh. 5 - Prob. 5.76PCh. 5 - Prob. 5.77PCh. 5 - Prob. 5.78PCh. 5 - Aluminum chloride is easily vaporized above 180C....Ch. 5 - An atmospheric chemist studying the pollutant SO2...Ch. 5 - The thermal decomposition of ethylene occurs...Ch. 5 - Prob. 5.82PCh. 5 - Analysis of a newly discovered gaseous...Ch. 5 - Prob. 5.84PCh. 5 - Prob. 5.85PCh. 5 - Containers A, B, and C are attached by closed...Ch. 5 - Prob. 5.87PCh. 5 - Prob. 5.88PCh. 5 - Prob. 5.89PCh. 5 - Prob. 5.90PCh. 5 - Prob. 5.91PCh. 5 - Prob. 5.92PCh. 5 - To study a key fuel-cell reaction, a chemical...Ch. 5 - Prob. 5.94PCh. 5 - Prob. 5.95PCh. 5 - Prob. 5.96PCh. 5 - Prob. 5.97PCh. 5 - Prob. 5.98PCh. 5 - Prob. 5.99PCh. 5 - In A, the picture shows a cylinder with 0.1 mol of...Ch. 5 - Prob. 5.101PCh. 5 - Prob. 5.102PCh. 5 - According to government standards, the 8h...Ch. 5 - One way to prevent emission of the pollutant NO...Ch. 5 - Prob. 5.105PCh. 5 - Prob. 5.106PCh. 5 - Prob. 5.107PCh. 5 - Prob. 5.108P
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Step by Step Stoichiometry Practice Problems | How to Pass ChemistryMole Conversions Made Easy: How to Convert Between Grams and Moles; Author: Ketzbook;https://www.youtube.com/watch?v=b2raanVWU6c;License: Standard YouTube License, CC-BY