Materials Science And Engineering Properties
Materials Science And Engineering Properties
1st Edition
ISBN: 9781111988609
Author: Charles Gilmore
Publisher: Cengage Learning
Question
Book Icon
Chapter 5, Problem 5.8P

(a)

To determine

The temperature when the first solid form and the chemical composition of first solid.

(b)

To determine

The temperature at which the alloy completely transforms to solid, the phases present in alloy and the chemical composition at transformation temperature.

(c)

To determine

The atom fraction of each phase at room temperature.

Blurred answer
Students have asked these similar questions
A steel alloy is known to contain 93.8 wt% Fe, 6.0 wt% Ni, and 0.2 wt% C. Assume that there are no alterations in the positions of other phase boundaries with the addition of Ni. (a) What is the approximate eutectoid temperature of this alloy? i °C (b) What is the proeutectoid phase when this alloy is cooled to a temperature just below the eutectoid? (c) Compute the relative amounts of the proeutectoid phase and pearlite. i Wp i
A magnesium-lead alloy of mass 6.4 kg consists of a solid a phase that has a composition just slightly below the solubility limit at 300°C (570°F). The magnesium-lead phase diagram is shown in Animated Figure 9.20. (a) What mass of lead is in the alloy? i kg (b) If the alloy is heated to 400°C (750°F), how much more lead may be dissolved in the a phase without exceeding the solubility limit of this phase? kg
For alloys of two hypothetical metals A and B, there exist an a, A-rich phase and a ß, B-rich phase. From the mass fractions of both phases for two different alloys (given below), which are at the same temperature, determine the composition of the phase boundary (or solubility limit) for the following: Fraction Fraction Alloy Composition a Phase B Phase 60 wt% A - 40 wt% B 0.59 0.41 30 wt% A - 70 wt% B 0.13 0.87 (a) a phase wt% A (b) B phase wt% A