Concept explainers
a)
Interpretation: From the given condition, the temperature and pressure of a container filled with 175g argon should be determined.
Concept introduction:
By combining the three gaseous laws namely Boyle’s law, Charles’s law and
According to ideal gas law,
Where,
P = pressure in atmospheres
V= volumes in liters
n = number of moles
R =universal gas constant (
T = temperature in kelvins
By knowing any three of these properties, the state of a gas can be simply identified with applying the ideal gas equation.
(b)
Interpretation: From the given condition, the temperature and pressure of a container filled with 175g argon should be determined.
Concept introduction:
By combining the three gaseous laws namely Boyle’s law, Charles’s law and
According to ideal gas law,
Where,
P = pressure in atmospheres
V= volumes in liters
n = number of moles
R =universal gas constant (
T = temperature in kelvins
By knowing any three of these properties, the state of a gas can be simply identified with applying the ideal gas equation.
Trending nowThis is a popular solution!
Chapter 5 Solutions
Chemistry
- The hydrocarbon octane (C8H18) bums to give CO2 and water vapor: 2 C8H18(g) + 25 O2(g) 16 CO2(g) + 18 H2O(g) If a 0.048-g sample of octane burns completely in O2, what will be the pressure of water vapor in a 4.75-L flask at 30.0 C? If the O2 gas needed for complete combustion was contained in a 4.75-L flask at 22 C, what would its pressure be?arrow_forwardA 15.0L tank is filled with H2 to a pressure of 2.00 l02tm. How many balloons (each 2.00 L) can be inflated to a pressure of 1.00 atm from the tank? Assume that there is no temperature change and that the tank cannot be emptied below 1.00 atm pressure.arrow_forwardYou have a 550.-mL tank of gas with a pressure of 1.56 atm at 24 C. You thought the gas was pure carbon monoxide gas, CO, but you later found it was contaminated by small quantities of gaseous CO2 and O2. Analysis shows that the tank pressure is 1.34 atm (at 24 C) if the CO2 is removed. Another experiment shows that 0.0870 g of O2 can be removed chemically. What are the masses of CO and CO2 in the tank, and what is the partial pressure of each of the three gases at 25 C?arrow_forward
- In the text, it is stated that the pressure of 4.00 mol of Cl2 in a 4.00-L tank at 100.0 C should be 26.0 atm if calculated using the van der Waals equation. Verify this result, and compare it with the pressure predicted by the ideal gas law.arrow_forwardIf equal masses of O2 and N2 are placed in separate containers of equal volume at the same temperature, which of the following statements is true? If false, explain why it is false. (a) The pressure in the flask containing N2 is greater than that in the flask containing O2. (b) There are more molecules in the flask containing O2 than in the flask containing N2.arrow_forwardA spherical glass container of unknown volume contains helium gas at 25C and 1.960 atm. When a portion of the helium is withdrawn and adjusted to 1.00 atm at 25C, it is found to have a volume of 1.75 cm3. The gas remaining in the first container shows a pressure of 1.710 atm. Calculate the volume of the spherical container.arrow_forward
- Under which of the following sets of conditions does a real gas behave most like an ideal gas, and for which conditions is a real gas expected to deviate from ideal behavior? Explain. (a) high pressure, small volume (b) high temperature, low pressure (c) low temperature, high pressurearrow_forwardWhat does “STP’ stand for? What conditions correspond to STP? What is the volume occupied by one mole of an ideal gas at STParrow_forwardA chemist weighed out 5.14 g of a mixture containing unknown amounts of BaO(s) and CaO(s) and placed the sample in a 1.50-L flask containing CO2(g) at 30.0C and 750. torr. After the reaction to form BaCO3(s) and CaCO3(s) was completed, the pressure of CO2(g) remaining was 230. torr. Calculate the mass percentages of CaO(s) and BaO(s) in the mixture.arrow_forward
- Ammonia gas is synthesized by combining hydrogen and nitrogen: 3 H2(g) + N2(g) 2 NH3(g) (a) If you want to produce 562 g of NH3, what volume of H2 gas, at 56 C and 745 mm Hg, is required? (b) Nitrogen for this reaction will be obtained from air. What volume of air, measured at 29 C and 745 mm Hg pressure, will be required to provide the nitrogen needed to produce 562 g of NH3? Assume the sample of air contains 78.1 mole % N2.arrow_forwardShown below are three containers of an ideal gas (A, B, and C), each equipped with a movable piston (assume that atmospheric pressure is 1.0 atm). a How do the pressures in these containers compare? b Are all the gases at the same temperature? If not, compare the temperatures. c If you cooled each of the containers in an ice-water bath to 0.0C, describe how the volumes and pressures of the gases in these containers would compare.arrow_forward
- Living By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co