Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 21P
(II) For two blocks, connected by a cord and sliding down the incline shown in Fig. 5–34 (see Problem 20), describe the motion (a) if μA < μB, and (b) if μA > μB. (c) Determine a formula for the acceleration of each block and the tension FT in the cord in terms of mA, mB, and θ; interpret your results in light of your answers to (a) and (b).
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(II) A wet bar of soap slides down a ramp 9.0 m long
inclined at 8.0°. How long does it take to reach the bottom?
Assume µk
0.060.
(II) Uphill escape ramps are sometimes provided to the side of steep downhill highways for trucks with overheated brakes. For a simple 11° upward ramp, what minimum length wouldbe needed for a runaway truck traveling 140 km/h? Note the large size of your calculated length. (If sand is used forthe bed of the ramp, its length can be reduced by a factor of about 2.)
ASSIGNMENTS
ASSIGNENT-01
A train accelerates uniformly from
rest at station A to a maximum speed
of 72km/h. The constant maximum
speed is maintained for a period of
time and the train then decelerate
uniformly until it comes to a stop at
station B. The distance between two
railway stations is 22km and the
journey takes 20min if the magnitude
of the acceleration is half that of
deceleration, by using graphical
method determine
(i) The a
(ii) Tim
(iii) Pro
Newto
NB:
The
individ
and e
hard c
3 rom
above.
Chapter 5 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 5.1 - If s = 0.40 and mg = 20 N, what minimum force F...Ch. 5.1 - Prob. 1BECh. 5.2 - Prob. 1CECh. 5.2 - If the radius is doubled to 1.20m but the period...Ch. 5.3 - A rider on a Ferris wheel moves in a vertical...Ch. 5.4 - The banking angle of a curve for a design speed v...Ch. 5.4 - Can a heavy truck and a small car travel safely at...Ch. 5.4 - When the speed of the race car in Example 516 is...Ch. 5 - A heavy crate rests on the bed of a flatbed truck....Ch. 5 - A block is given a push so that it slides up a...
Ch. 5 - Why is the stopping distance of a truck much...Ch. 5 - Can a coefficient of friction exceed 1.0?Ch. 5 - Cross-country skiers prefer their skis to have a...Ch. 5 - When you must brake your car very quickly, why is...Ch. 5 - When attempting to stop a car quickly on dry...Ch. 5 - You are trying to push your stalled car. Although...Ch. 5 - It is not easy to walk on an icy sidewalk without...Ch. 5 - A car rounds a curve at a steady 50 km/h. If it...Ch. 5 - Will the acceleration of a car be the same when a...Ch. 5 - Describe all the forces acting on a child riding a...Ch. 5 - A child on a sled comes flying over the crest of a...Ch. 5 - Sometimes it is said that water is removed from...Ch. 5 - Technical reports often specify only the rpm for...Ch. 5 - A girl is whirling a ball on a string around her...Ch. 5 - The game of tetherball is played with a ball tied...Ch. 5 - Astronauts who spend long periods in outer space...Ch. 5 - A bucket of water can be whirled in a vertical...Ch. 5 - A car maintains a constant speed v as it traverses...Ch. 5 - Why do bicycle riders lean in when rounding a...Ch. 5 - Why do airplanes bank when they turn? How would...Ch. 5 - For a drag force of the form F = bv, what are the...Ch. 5 - Suppose two forces act on an object, one force...Ch. 5 - (I) If the coefficient of kinetic friction between...Ch. 5 - (I) A force of 35.0 N is required to start a...Ch. 5 - (I) Suppose you are standing on a train...Ch. 5 - (I) The coefficient of static friction between...Ch. 5 - (I) What is the maximum acceleration a car can...Ch. 5 - (II) (a) A box sits at rest on a rough 33 inclined...Ch. 5 - (II) A 25.0-kg box is released on a 27 incline and...Ch. 5 - (II) A car can decelerate at 3.80 m/s2 without...Ch. 5 - (II) A skier moves down a 27 slope at constant...Ch. 5 - (II) A wet bar of soap slides freely down a ramp...Ch. 5 - (II) A box is given a push so that it slides...Ch. 5 - (II) (a) Show that the minimum stopping distance...Ch. 5 - (II) A 1280-kg car pulls a 350-kg trailer. The car...Ch. 5 - (II) Police investigators, examining the scene of...Ch. 5 - (II) Piles of snow on slippery roofs can become...Ch. 5 - (II) A small box is held in place against a rough...Ch. 5 - (II) Two crates, of mass 65 kg and 125 kg, are in...Ch. 5 - (II) The crate shown in Fig. 5-33 lies on a plane...Ch. 5 - (II) A crate is given an initial speed of 3.0 m/s...Ch. 5 - (II) Two blocks made of different materials...Ch. 5 - (II) For two blocks, connected by a cord and...Ch. 5 - (II) A flatbed truck is carrying a heavy crate....Ch. 5 - (II) In Fig 535 the coefficient of static friction...Ch. 5 - (II) Determine a formula for the acceleration of...Ch. 5 - (II) A small block of mass m is given an initial...Ch. 5 - (II) A 75-kg snowboarder has an initial velocity...Ch. 5 - (II) A package of mass m is dropped vertically...Ch. 5 - (II) Two masses mA = 2.0 kg and mB = 5.0 kg are on...Ch. 5 - (II) A child slides down a slide with a 34...Ch. 5 - (II) (a) Suppose the coefficient of kinetic...Ch. 5 - (III) A 3.0-kg block sits on top of a 5.0-kg block...Ch. 5 - (III) A 4.0-kg block is stacked on top of a...Ch. 5 - (III) A small block of mass m rests on the rough...Ch. 5 - (I) What is the maximum speed with which a 1200-kg...Ch. 5 - (I) A child sitting 1.20 m from the center of a...Ch. 5 - (I) A jet plane traveling 1890 km/h (525 m/s)...Ch. 5 - (II) Is it possible to whirl a bucket of water...Ch. 5 - (II) How fast (in rpm) must a centrifuge rotate if...Ch. 5 - (II) Highway curves are marked with a suggested...Ch. 5 - (II) At what minimum speed must a roller coaster...Ch. 5 - (II) A sports car crosses the bottom of a valley...Ch. 5 - (II) How large must the coefficient of static...Ch. 5 - (II) Suppose the space shuttle is in orbit 400 km...Ch. 5 - (II) A bucket of mass 2.00 kg is whirled in a...Ch. 5 - (II) How many revolutions per minute would a...Ch. 5 - (II) Use dimensional analysis (Section 1-7) to...Ch. 5 - (II) A jet pilot takes his aircraft in a vertical...Ch. 5 - (II) A proposed space station consists of a...Ch. 5 - (II) On an ice rink two skaters of equal mass grab...Ch. 5 - (II) Redo Example 511, precisely this time, by not...Ch. 5 - (II) A coin is placed 12.0cm from the axis of a...Ch. 5 - (II) The design of a new road includes a straight...Ch. 5 - (II) A 975-kg sports car (including driver)...Ch. 5 - (II) Two blocks with masses mA and mB, are...Ch. 5 - (II) Tarzan plans to cross a gorge by swinging in...Ch. 5 - (II) A pilot performs an evasive maneuver by...Ch. 5 - (III) The position of a particle moving in the xy...Ch. 5 - (III) If a curve with a radius of 85 m is properly...Ch. 5 - Since the curve is designed for a speed of 85...Ch. 5 - Prob. 60PCh. 5 - (II) In Problem 60 assume the tangential...Ch. 5 - (II) An object moves in a circle of radius 22 m...Ch. 5 - (III) A particle rotates in a circle of radius...Ch. 5 - (III) An object of mass m is constrained to move...Ch. 5 - (I) Use dimensional analysis (Section 17) in...Ch. 5 - (II) The terminal velocity of a 3 105 kg raindrop...Ch. 5 - (II) An object moving vertically has v=v0at t = 0....Ch. 5 - (III) The drag force on large objects such as...Ch. 5 - (III) A bicyclist can cost down a 7.0 hill at a...Ch. 5 - (III) Two drag forces act on a bicycle and rider:...Ch. 5 - (III) Determine a formula for the position and...Ch. 5 - (III) A block of mass m slides along a horizontal...Ch. 5 - (III) Show that the maximum distance the block in...Ch. 5 - (III) You dive straight down into a pool of water....Ch. 5 - (III) A motorboat traveling at a speed of 2.4 m/s...Ch. 5 - A coffee cup on the horizontal dashboard of a car...Ch. 5 - A 2.0-kg silverware drawer does not slide readily....Ch. 5 - A roller coaster reaches the top of the steepest...Ch. 5 - An 18.0-kg box is released on a 37.0 inclinc and...Ch. 5 - A flat puck (mass M) is revolved in a circle on a...Ch. 5 - A motorcyclist is coasting with the engine off at...Ch. 5 - In a Rotor-ride at a carnival, people rotate in a...Ch. 5 - A device for training astronauts and jet fighter...Ch. 5 - A 1250-kg car rounds a curve of radius 72 m banked...Ch. 5 - Determine the tangential and centripetal...Ch. 5 - The 70.0-kg climber in Fig. 550 is supported in...Ch. 5 - A small mass m is set on the surface of a sphere,...Ch. 5 - A 28.0-kg block is connected to an empty 2.00-kg...Ch. 5 - A car is heading down a slippery road at a speed...Ch. 5 - What is the acceleration experienced by the tip of...Ch. 5 - An airplane traveling at 480 km/h needs to reverse...Ch. 5 - A banked curve of radius R in a new highway...Ch. 5 - A small head of mass m is constrained to slide...Ch. 5 - Earth is not quite an inertial frame. We often...Ch. 5 - While fishing, you get bored and start to swing a...Ch. 5 - Consider a train that rounds a curve with a radius...Ch. 5 - A car starts rolling down a 1-in-4 hill (1-in-4...Ch. 5 - The sides of a cone make an angle with the...Ch. 5 - A 72kg water skier is being accelerated by a ski...Ch. 5 - A ball of mass m = 1.0 kg at the end of a thin...Ch. 5 - A car drives at a constant speed around a banked...Ch. 5 - (III) The force of air resistance (drag force) on...Ch. 5 - (III) The coefficient of kinetic friction k...Ch. 5 - (III) Assume a net force F = mg kv2 acts during...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Check Your Understanding Suppose we included the sun in the system. Approximately where would the center of mas...
University Physics Volume 1
Choose the best answer to each of the following. Explain your reasoning. The oxygen in Earths atmosphere was re...
The Cosmic Perspective Fundamentals (2nd Edition)
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective (8th Edition)
Figure 12.23 shows a 1250-kg car that has slipped over an embankment. People are trying to hold the car in plac...
Essential University Physics: Volume 1 (3rd Edition)
Express the unit vectors in terms of (that is, derive Eq. 1.64). Check your answers several ways Also work o...
Introduction to Electrodynamics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (III) Two masses ma = 2.0 kg and mg = 5.0 kg are on inclines and are connected together by a string as shown in Fig. 4-61. The coefficient of kinetic friction between each mass and its incline is uk = 0.30. If ma moves up, and mB moves down, determine their acceleration. [Ignore masses of the (frictionless) pulley and the cord.] mB 51° 21° FIGURE 4–61 Problem 65.arrow_forward(1) A mass m (=3 kg) is held in equilibrium by two strings as shown in the adjacent figure (Fig. 1). Find the tension Ti in string 1. (cos (37°) =0.8, sin (37°) =0.6), g =10m/s²) A) 50 N B) 30 N C) 40 N D) 20 N Fig.1 m 37⁰ 2arrow_forward(II) Two snowcats in Antarctica are towing a housing unit north, as shown in Fig. 4–50. The sum of the forces F→A and F→B exerted on the unit by the horizontal cables is north, parallel to the line L, and FA = 4500 N. Determine FB and the magnitude of F→A+F→B.arrow_forward
- A trucks brakes fail while driving down a hill at a speed of 92 km/hr at the emergency ramp shown. If θ=15º, determine the minimum ramp length L in meters necessary to stop the truck. Use g = 10 N/kg and neglect friction. Don;t forget to convert units.arrow_forward(II) The design of a new road includes a straight stretch that is horizontal and flat but that suddenly dips down a steep hill at 18°. The transi- tion should be rounded with what minimum radius so that cars traveling 95 km/h will not leave the road (Fig. 5–40)? FIGURE 5–40 Problem 16.arrow_forward(25) The position vector of an object of mass 0.50 kg subject to a constant force is given byr = (at²+bt) + (ct2+dt)j + (et2+ft) k, where a = 2.0 m/s², b = 3.0 m/s, c = 2.5 m/s2, d = -2.0 m/s, e = 1.0 m/s2, and f = 4.0 m/s. What is the angular momentum of the object about the origin at t = 2.0 s? 12) A) (241-122-89 k) kg.m²/s k) kg.m²/s B) (25+14+20 C) (25-14+20 k) kg.m²/s D) (-24 + 10 + 23 k) kg.m²/s E) (241 + 122 +23 k) kg.m²/sarrow_forward
- (III) (a) Suppose the coefficient of kinetic friction between ma and the plane in Fig. 4-62 is µk = 0.15, and that mA = mB = 2.7 kg. As mB moves down, determine the magnitude of the acceleration of ma and mg, given 0 = 34°. (b) What smallest value of pk will keep the system from accelerating? [Ignore masses of the (frictionless) pulley and the cord.] mB FIGURE 4-62 Problem 67.arrow_forward2-33. Determine the resultant of the force system in Fig. P 2-33 and locate it with reepect to point O. The 100-lb and 80-lb forces are tangent to the circle. 100 30 FIG. P 2-33arrow_forwardThe crate shown in Fig. 4-60 lies on a plane tilted at an angle (theta)= 25.0 degrees to the horizontal, with (mu-of-k)= 0.19. (a) Determine the acceleration of the crate as it slides down the plane. (b) If the crate starts from rest 8.15 m up along the plane from its base, what will be the crate’s speed when it reaches the bottom of the incline?arrow_forward
- 2-71. Specify the magnitude and coordinate direction angles aj, B1. Yı of F, so that the resultant of the three forces acting on the bracket is FR = {-350k } Ib. Note that F; lies in the x-y plane. F = 400 lb 30 F = 200 Ib Prob. 2-71arrow_forwardShow below how to find the resultant of forces F, and F, using sine and cosine laws given in equations (1) and (2). (10 pts) FA = 100 N; 30° FoF 200 N; 180°arrow_forwardTwo blocks made of different materials, connected by a thin cord, slide down a plane ramp inclined at an angle 0 to the horizontal, Fig. 4–76 (block B is above block A). The masses of the blocks are ma and mB, and the coefficients of fric- tion are ua and µr. If ma = mß = 5.0 kg, and HA = 0.20 and uR = 0.30, determine (a) the acceleration of the blocks and (b) the tension in the cord, for an angle 0 = 32°. MB FIGURE 4–76 Problem 94.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Gravitational Force (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=pxp1Z91S5uQ;License: Standard YouTube License, CC-BY