Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 20Q
A car maintains a constant speed v as it traverses the hill and valley shown in Fig. 5–31. Both the hill and valley have a radius of curvature R. At which point, A, B, or C, is the normal force acting on the car (a) the largest, (b) the smallest? Explain. (c) Where would the driver feel heaviest and (d) lightest? Explain. (e) How fast can the car go without losing contact with the road at A?
FIGURE 5–31 Question 20.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A car of mass m passes over a hump in a road that follows the arc of a circle of radius R. (a) If the car travels at a speed v, what force does the road exert on the car as the car passes the highest point of the hump? (b) What If? What is the maximum speed the car can have without losing contact with the road as it passes this highest point?
(4). a) How fast should a 1,150 kg car
move to make a
circular turn of radius 48m on a flat
concrete road, if
the coefficient of friction between
the tires and the
road is 0.56? Purpose is to avoid
skidding.
(b) How fast should a 1,150 kg car
move to make a
circular turn of radius 56 m on a
banked road
elevated 9° with respect to the
horizontal.
A motorcyclist rounds a curve of radius
30 m at 41 km/h. The combined mass of the
motorcycle and the man is 150 kg. (i) What is
the centripetal force exerted on the
motorcyclist? (ii) What is the upward force
exerted on the motorcyclist?
Chapter 5 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 5.1 - If s = 0.40 and mg = 20 N, what minimum force F...Ch. 5.1 - Prob. 1BECh. 5.2 - Prob. 1CECh. 5.2 - If the radius is doubled to 1.20m but the period...Ch. 5.3 - A rider on a Ferris wheel moves in a vertical...Ch. 5.4 - The banking angle of a curve for a design speed v...Ch. 5.4 - Can a heavy truck and a small car travel safely at...Ch. 5.4 - When the speed of the race car in Example 516 is...Ch. 5 - A heavy crate rests on the bed of a flatbed truck....Ch. 5 - A block is given a push so that it slides up a...
Ch. 5 - Why is the stopping distance of a truck much...Ch. 5 - Can a coefficient of friction exceed 1.0?Ch. 5 - Cross-country skiers prefer their skis to have a...Ch. 5 - When you must brake your car very quickly, why is...Ch. 5 - When attempting to stop a car quickly on dry...Ch. 5 - You are trying to push your stalled car. Although...Ch. 5 - It is not easy to walk on an icy sidewalk without...Ch. 5 - A car rounds a curve at a steady 50 km/h. If it...Ch. 5 - Will the acceleration of a car be the same when a...Ch. 5 - Describe all the forces acting on a child riding a...Ch. 5 - A child on a sled comes flying over the crest of a...Ch. 5 - Sometimes it is said that water is removed from...Ch. 5 - Technical reports often specify only the rpm for...Ch. 5 - A girl is whirling a ball on a string around her...Ch. 5 - The game of tetherball is played with a ball tied...Ch. 5 - Astronauts who spend long periods in outer space...Ch. 5 - A bucket of water can be whirled in a vertical...Ch. 5 - A car maintains a constant speed v as it traverses...Ch. 5 - Why do bicycle riders lean in when rounding a...Ch. 5 - Why do airplanes bank when they turn? How would...Ch. 5 - For a drag force of the form F = bv, what are the...Ch. 5 - Suppose two forces act on an object, one force...Ch. 5 - (I) If the coefficient of kinetic friction between...Ch. 5 - (I) A force of 35.0 N is required to start a...Ch. 5 - (I) Suppose you are standing on a train...Ch. 5 - (I) The coefficient of static friction between...Ch. 5 - (I) What is the maximum acceleration a car can...Ch. 5 - (II) (a) A box sits at rest on a rough 33 inclined...Ch. 5 - (II) A 25.0-kg box is released on a 27 incline and...Ch. 5 - (II) A car can decelerate at 3.80 m/s2 without...Ch. 5 - (II) A skier moves down a 27 slope at constant...Ch. 5 - (II) A wet bar of soap slides freely down a ramp...Ch. 5 - (II) A box is given a push so that it slides...Ch. 5 - (II) (a) Show that the minimum stopping distance...Ch. 5 - (II) A 1280-kg car pulls a 350-kg trailer. The car...Ch. 5 - (II) Police investigators, examining the scene of...Ch. 5 - (II) Piles of snow on slippery roofs can become...Ch. 5 - (II) A small box is held in place against a rough...Ch. 5 - (II) Two crates, of mass 65 kg and 125 kg, are in...Ch. 5 - (II) The crate shown in Fig. 5-33 lies on a plane...Ch. 5 - (II) A crate is given an initial speed of 3.0 m/s...Ch. 5 - (II) Two blocks made of different materials...Ch. 5 - (II) For two blocks, connected by a cord and...Ch. 5 - (II) A flatbed truck is carrying a heavy crate....Ch. 5 - (II) In Fig 535 the coefficient of static friction...Ch. 5 - (II) Determine a formula for the acceleration of...Ch. 5 - (II) A small block of mass m is given an initial...Ch. 5 - (II) A 75-kg snowboarder has an initial velocity...Ch. 5 - (II) A package of mass m is dropped vertically...Ch. 5 - (II) Two masses mA = 2.0 kg and mB = 5.0 kg are on...Ch. 5 - (II) A child slides down a slide with a 34...Ch. 5 - (II) (a) Suppose the coefficient of kinetic...Ch. 5 - (III) A 3.0-kg block sits on top of a 5.0-kg block...Ch. 5 - (III) A 4.0-kg block is stacked on top of a...Ch. 5 - (III) A small block of mass m rests on the rough...Ch. 5 - (I) What is the maximum speed with which a 1200-kg...Ch. 5 - (I) A child sitting 1.20 m from the center of a...Ch. 5 - (I) A jet plane traveling 1890 km/h (525 m/s)...Ch. 5 - (II) Is it possible to whirl a bucket of water...Ch. 5 - (II) How fast (in rpm) must a centrifuge rotate if...Ch. 5 - (II) Highway curves are marked with a suggested...Ch. 5 - (II) At what minimum speed must a roller coaster...Ch. 5 - (II) A sports car crosses the bottom of a valley...Ch. 5 - (II) How large must the coefficient of static...Ch. 5 - (II) Suppose the space shuttle is in orbit 400 km...Ch. 5 - (II) A bucket of mass 2.00 kg is whirled in a...Ch. 5 - (II) How many revolutions per minute would a...Ch. 5 - (II) Use dimensional analysis (Section 1-7) to...Ch. 5 - (II) A jet pilot takes his aircraft in a vertical...Ch. 5 - (II) A proposed space station consists of a...Ch. 5 - (II) On an ice rink two skaters of equal mass grab...Ch. 5 - (II) Redo Example 511, precisely this time, by not...Ch. 5 - (II) A coin is placed 12.0cm from the axis of a...Ch. 5 - (II) The design of a new road includes a straight...Ch. 5 - (II) A 975-kg sports car (including driver)...Ch. 5 - (II) Two blocks with masses mA and mB, are...Ch. 5 - (II) Tarzan plans to cross a gorge by swinging in...Ch. 5 - (II) A pilot performs an evasive maneuver by...Ch. 5 - (III) The position of a particle moving in the xy...Ch. 5 - (III) If a curve with a radius of 85 m is properly...Ch. 5 - Since the curve is designed for a speed of 85...Ch. 5 - Prob. 60PCh. 5 - (II) In Problem 60 assume the tangential...Ch. 5 - (II) An object moves in a circle of radius 22 m...Ch. 5 - (III) A particle rotates in a circle of radius...Ch. 5 - (III) An object of mass m is constrained to move...Ch. 5 - (I) Use dimensional analysis (Section 17) in...Ch. 5 - (II) The terminal velocity of a 3 105 kg raindrop...Ch. 5 - (II) An object moving vertically has v=v0at t = 0....Ch. 5 - (III) The drag force on large objects such as...Ch. 5 - (III) A bicyclist can cost down a 7.0 hill at a...Ch. 5 - (III) Two drag forces act on a bicycle and rider:...Ch. 5 - (III) Determine a formula for the position and...Ch. 5 - (III) A block of mass m slides along a horizontal...Ch. 5 - (III) Show that the maximum distance the block in...Ch. 5 - (III) You dive straight down into a pool of water....Ch. 5 - (III) A motorboat traveling at a speed of 2.4 m/s...Ch. 5 - A coffee cup on the horizontal dashboard of a car...Ch. 5 - A 2.0-kg silverware drawer does not slide readily....Ch. 5 - A roller coaster reaches the top of the steepest...Ch. 5 - An 18.0-kg box is released on a 37.0 inclinc and...Ch. 5 - A flat puck (mass M) is revolved in a circle on a...Ch. 5 - A motorcyclist is coasting with the engine off at...Ch. 5 - In a Rotor-ride at a carnival, people rotate in a...Ch. 5 - A device for training astronauts and jet fighter...Ch. 5 - A 1250-kg car rounds a curve of radius 72 m banked...Ch. 5 - Determine the tangential and centripetal...Ch. 5 - The 70.0-kg climber in Fig. 550 is supported in...Ch. 5 - A small mass m is set on the surface of a sphere,...Ch. 5 - A 28.0-kg block is connected to an empty 2.00-kg...Ch. 5 - A car is heading down a slippery road at a speed...Ch. 5 - What is the acceleration experienced by the tip of...Ch. 5 - An airplane traveling at 480 km/h needs to reverse...Ch. 5 - A banked curve of radius R in a new highway...Ch. 5 - A small head of mass m is constrained to slide...Ch. 5 - Earth is not quite an inertial frame. We often...Ch. 5 - While fishing, you get bored and start to swing a...Ch. 5 - Consider a train that rounds a curve with a radius...Ch. 5 - A car starts rolling down a 1-in-4 hill (1-in-4...Ch. 5 - The sides of a cone make an angle with the...Ch. 5 - A 72kg water skier is being accelerated by a ski...Ch. 5 - A ball of mass m = 1.0 kg at the end of a thin...Ch. 5 - A car drives at a constant speed around a banked...Ch. 5 - (III) The force of air resistance (drag force) on...Ch. 5 - (III) The coefficient of kinetic friction k...Ch. 5 - (III) Assume a net force F = mg kv2 acts during...
Additional Science Textbook Solutions
Find more solutions based on key concepts
15. (II) The gauge pressure in each of the four tires of an automobile is 240 kPa. If each tire has a “footprin...
Physics: Principles with Applications
Repeat the previous problem for the case where the pulse on the right is upright rather than inverted
College Physics
22.22 A point charge of ?3.00 ?C is located in the center of a spherical cavity of radius 6.50 cm that, in turn...
University Physics with Modern Physics (14th Edition)
Jet turbines spin rapidly. They are designed to fly apart if something makes them seize suddenly, rather than t...
College Physics
Write the SI unit for each abbreviation.
29. 27 mm
Applied Physics (11th Edition)
Why didn’t Copernicus’s model gain immediate acceptance? Why did some scientists favor it, despite this drawbac...
Life in the Universe (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A crate of eggs is located in the middle of the flatbed of a pickup truck as the truck negotiates a curve in the flat road. The curve may be regarded as an arc of a circle of radius 35.0 m. If the coefficient of static friction between crate and truck is 0.600, how fast can the truck be moving without the crate sliding?arrow_forwardAn office door is given a sharp push and swings open against a pneumatic device that slows the door down and then reverses its motion. At the moment the door is open the widest, (a) does the doorknob have a centripetal acceleration? (b) Does it have a tangential acceleration?arrow_forwardAn amusement park ride consists of a large vertical cylinder that spins about its axis fast enough that any person inside is held up against the wall when the floor drops away (Fig. P5.60). The coefficient of static friction between person and wall is s, and the radius of the cylinder is R. (a) Show that the maximum period of revolution necessary to keep the person from falling is T=(42Rs/g)1/2. (b) If the rate of revolution of the cylinder is made to be somewhat larger, what happens to the magnitude of each one of the forces acting on the person? What happens in the motion of the person? (c) If the rate of revolution of the cylinder is instead made to be somewhat smaller, what happens to the magnitude of each one of the forces acting on the person? What happens in the motion of the person?arrow_forward
- A car drives at steady speed around a perfectly circulartrack.(a) The car’s acceleration is zero.(b) The net force on the car is zero.(c) Both the acceleration and net force on the car pointoutward.(d) Both the acceleration and net force on the car pointinward.(e) If there is no friction, the acceleration is outward.arrow_forwardMc 2arrow_forward1) A motorcycle with mass 6 kg moves at a constant speed of 20 m/s in a vertical circle inside a hollow metal cylinder that has a radius of r=4 m as shown in Figure. (a) Find the normal force exerted on the motorcycle at point A at the bottom of the circle. (b) Find the normal force exerted on the motorcyele at point B at the top of the circle. (c) Find the centripetal acceleration. r-4 m Aarrow_forward
- (a) As you ride on a Ferris wheel, yourapparent weight is different at the top than at the bottom.Explain. (b) Calculate your apparent weight at the top and bottom of a Ferris wheel, given that the radius of the wheel is 7.2 m, itcompletes one revolution every 28 s, and your mass is 55 kg.arrow_forwardhow fast can you drive around a circle with a diameter of 30 meters when the static coefficient of friction is 0.15. assume the circle in question is perfect (no bumps or hills)arrow_forwardYou (m = 50 kg) are in a rollercoaster travelling at a constant speed of 50 mph when it goes over a hump which, at the top, can be approximated by a circle of radius 15 m. (A) Is the harness necessary in order for you to stay on the ride? In other words, if there was nothing keeping you in your seat, would you fly off? (B) If you answer to (A) is no, calculate the normal force at the top, if your answer to (A) is yes, calculate the force the harness must exert on you. (Remember that force is a vector so you have to indicate direction as well.) Hint for (A): 1. With what speed would you have to go over the hump in order for only gravity to be needed? 2. If your speed is larger, what do you think is going on?arrow_forward
- Largely because of riding in cars, you are used to horizontal circular motion. Vertical circular motion would be anovelty. In this sample problem, such motion seems todefy the gravitational force.In a 1901 circus performance, Allo “Dare Devil”Diavolo introduced the stunt of riding a bicycle in a loopthe-loop (Fig. 6-9a). Assuming that the loop is a circle withradius R 2.7 m, what is the least speed v that Diavolo andhis bicycle could have at the top of the loop to remain incontact with it there?arrow_forwardA flat (unbanked) curve on a highway has a radius of 220 m. A car successfully rounds the curve at a speed of but is on the verge of skidding out. (a) find the coefficient of friction necessary to keep the car on the road (b) If the coefficient of static friction between the car’s tires and the road surface were reduced by a factor of 2, with what maximum speed could the car round the curve? (b) Suppose the coefficient of friction were increased by a factor of 2; what would be the maximum speed?arrow_forwardDisturbed by speeding cars outside his workplace, Nobel laureate Arthur Holly Compton designed a speed bump (called the "Holly hump") and had it installed. Suppose a 1 800-kg car passes over a hump in a roadway that follows the arc of a circle of radius 19.6 m as in the figure below. (a) If the car travels at 29.5 km/h what force does the road exert on the car as the car passes the highest point of the hump? magnitude N direction down (b) What is the maximum speed the car can have without losing contact with the road as it passes this highest point? km/harrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Gravitational Force (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=pxp1Z91S5uQ;License: Standard YouTube License, CC-BY