Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 13Q
A child on a sled comes flying over the crest of a small hill, as shown in Fig. 5-28. His sled does not leave the ground, but he feels the normal force between his chest and the sled decrease as he goes over the hill. Explain this decrease using Newton’s second law.
FIGURE 5-28
Question 13.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 4.10 kg block is pushed along a floor by a constant applied force that is horizontal and has a magnitude of 40.0 N. Figure 6-30 gives the block’s speed v versus time t as the block moves along an x axis on the floor. The scale of the figure’s vertical axis is set by vs 5.0 m/s. What is the coefficient of kinetic friction between the block and the floor?
•14 Go Figure 7-27 shows an over-
head view of three horizontal forces
acting on a cargo canister that was
initially stationary but now moves
-х
across a frictionless floor. The force
magnitudes are F = 3.00 N, F =
4.00 N, and F; = 10.0 N, and the indi-
cated angles are 0, = 50.0° and 0 =
в,
%3!
35.0°. What is the net work done on
Figure 7-27 Problem 14.
the canister by the three forces dur-
ing the first 4.00 m of displacement?
88 In Fig. 6-59, block 1 of mass m = 2.0 kg and block 2 of mass
m2 = 1.0 kg are connected by a string of negligible mass. Block 2 is
pushed by force F of magnitude 20 N and angle 0= 35°.The coef-
%3D
%3D
%3D
ficient of kinetic friction between each block and the horizontal
surface is 0.20. What is the tension in the string?
Fig. 6-59 Problem 88.
Chapter 5 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 5.1 - If s = 0.40 and mg = 20 N, what minimum force F...Ch. 5.1 - Prob. 1BECh. 5.2 - Prob. 1CECh. 5.2 - If the radius is doubled to 1.20m but the period...Ch. 5.3 - A rider on a Ferris wheel moves in a vertical...Ch. 5.4 - The banking angle of a curve for a design speed v...Ch. 5.4 - Can a heavy truck and a small car travel safely at...Ch. 5.4 - When the speed of the race car in Example 516 is...Ch. 5 - A heavy crate rests on the bed of a flatbed truck....Ch. 5 - A block is given a push so that it slides up a...
Ch. 5 - Why is the stopping distance of a truck much...Ch. 5 - Can a coefficient of friction exceed 1.0?Ch. 5 - Cross-country skiers prefer their skis to have a...Ch. 5 - When you must brake your car very quickly, why is...Ch. 5 - When attempting to stop a car quickly on dry...Ch. 5 - You are trying to push your stalled car. Although...Ch. 5 - It is not easy to walk on an icy sidewalk without...Ch. 5 - A car rounds a curve at a steady 50 km/h. If it...Ch. 5 - Will the acceleration of a car be the same when a...Ch. 5 - Describe all the forces acting on a child riding a...Ch. 5 - A child on a sled comes flying over the crest of a...Ch. 5 - Sometimes it is said that water is removed from...Ch. 5 - Technical reports often specify only the rpm for...Ch. 5 - A girl is whirling a ball on a string around her...Ch. 5 - The game of tetherball is played with a ball tied...Ch. 5 - Astronauts who spend long periods in outer space...Ch. 5 - A bucket of water can be whirled in a vertical...Ch. 5 - A car maintains a constant speed v as it traverses...Ch. 5 - Why do bicycle riders lean in when rounding a...Ch. 5 - Why do airplanes bank when they turn? How would...Ch. 5 - For a drag force of the form F = bv, what are the...Ch. 5 - Suppose two forces act on an object, one force...Ch. 5 - (I) If the coefficient of kinetic friction between...Ch. 5 - (I) A force of 35.0 N is required to start a...Ch. 5 - (I) Suppose you are standing on a train...Ch. 5 - (I) The coefficient of static friction between...Ch. 5 - (I) What is the maximum acceleration a car can...Ch. 5 - (II) (a) A box sits at rest on a rough 33 inclined...Ch. 5 - (II) A 25.0-kg box is released on a 27 incline and...Ch. 5 - (II) A car can decelerate at 3.80 m/s2 without...Ch. 5 - (II) A skier moves down a 27 slope at constant...Ch. 5 - (II) A wet bar of soap slides freely down a ramp...Ch. 5 - (II) A box is given a push so that it slides...Ch. 5 - (II) (a) Show that the minimum stopping distance...Ch. 5 - (II) A 1280-kg car pulls a 350-kg trailer. The car...Ch. 5 - (II) Police investigators, examining the scene of...Ch. 5 - (II) Piles of snow on slippery roofs can become...Ch. 5 - (II) A small box is held in place against a rough...Ch. 5 - (II) Two crates, of mass 65 kg and 125 kg, are in...Ch. 5 - (II) The crate shown in Fig. 5-33 lies on a plane...Ch. 5 - (II) A crate is given an initial speed of 3.0 m/s...Ch. 5 - (II) Two blocks made of different materials...Ch. 5 - (II) For two blocks, connected by a cord and...Ch. 5 - (II) A flatbed truck is carrying a heavy crate....Ch. 5 - (II) In Fig 535 the coefficient of static friction...Ch. 5 - (II) Determine a formula for the acceleration of...Ch. 5 - (II) A small block of mass m is given an initial...Ch. 5 - (II) A 75-kg snowboarder has an initial velocity...Ch. 5 - (II) A package of mass m is dropped vertically...Ch. 5 - (II) Two masses mA = 2.0 kg and mB = 5.0 kg are on...Ch. 5 - (II) A child slides down a slide with a 34...Ch. 5 - (II) (a) Suppose the coefficient of kinetic...Ch. 5 - (III) A 3.0-kg block sits on top of a 5.0-kg block...Ch. 5 - (III) A 4.0-kg block is stacked on top of a...Ch. 5 - (III) A small block of mass m rests on the rough...Ch. 5 - (I) What is the maximum speed with which a 1200-kg...Ch. 5 - (I) A child sitting 1.20 m from the center of a...Ch. 5 - (I) A jet plane traveling 1890 km/h (525 m/s)...Ch. 5 - (II) Is it possible to whirl a bucket of water...Ch. 5 - (II) How fast (in rpm) must a centrifuge rotate if...Ch. 5 - (II) Highway curves are marked with a suggested...Ch. 5 - (II) At what minimum speed must a roller coaster...Ch. 5 - (II) A sports car crosses the bottom of a valley...Ch. 5 - (II) How large must the coefficient of static...Ch. 5 - (II) Suppose the space shuttle is in orbit 400 km...Ch. 5 - (II) A bucket of mass 2.00 kg is whirled in a...Ch. 5 - (II) How many revolutions per minute would a...Ch. 5 - (II) Use dimensional analysis (Section 1-7) to...Ch. 5 - (II) A jet pilot takes his aircraft in a vertical...Ch. 5 - (II) A proposed space station consists of a...Ch. 5 - (II) On an ice rink two skaters of equal mass grab...Ch. 5 - (II) Redo Example 511, precisely this time, by not...Ch. 5 - (II) A coin is placed 12.0cm from the axis of a...Ch. 5 - (II) The design of a new road includes a straight...Ch. 5 - (II) A 975-kg sports car (including driver)...Ch. 5 - (II) Two blocks with masses mA and mB, are...Ch. 5 - (II) Tarzan plans to cross a gorge by swinging in...Ch. 5 - (II) A pilot performs an evasive maneuver by...Ch. 5 - (III) The position of a particle moving in the xy...Ch. 5 - (III) If a curve with a radius of 85 m is properly...Ch. 5 - Since the curve is designed for a speed of 85...Ch. 5 - Prob. 60PCh. 5 - (II) In Problem 60 assume the tangential...Ch. 5 - (II) An object moves in a circle of radius 22 m...Ch. 5 - (III) A particle rotates in a circle of radius...Ch. 5 - (III) An object of mass m is constrained to move...Ch. 5 - (I) Use dimensional analysis (Section 17) in...Ch. 5 - (II) The terminal velocity of a 3 105 kg raindrop...Ch. 5 - (II) An object moving vertically has v=v0at t = 0....Ch. 5 - (III) The drag force on large objects such as...Ch. 5 - (III) A bicyclist can cost down a 7.0 hill at a...Ch. 5 - (III) Two drag forces act on a bicycle and rider:...Ch. 5 - (III) Determine a formula for the position and...Ch. 5 - (III) A block of mass m slides along a horizontal...Ch. 5 - (III) Show that the maximum distance the block in...Ch. 5 - (III) You dive straight down into a pool of water....Ch. 5 - (III) A motorboat traveling at a speed of 2.4 m/s...Ch. 5 - A coffee cup on the horizontal dashboard of a car...Ch. 5 - A 2.0-kg silverware drawer does not slide readily....Ch. 5 - A roller coaster reaches the top of the steepest...Ch. 5 - An 18.0-kg box is released on a 37.0 inclinc and...Ch. 5 - A flat puck (mass M) is revolved in a circle on a...Ch. 5 - A motorcyclist is coasting with the engine off at...Ch. 5 - In a Rotor-ride at a carnival, people rotate in a...Ch. 5 - A device for training astronauts and jet fighter...Ch. 5 - A 1250-kg car rounds a curve of radius 72 m banked...Ch. 5 - Determine the tangential and centripetal...Ch. 5 - The 70.0-kg climber in Fig. 550 is supported in...Ch. 5 - A small mass m is set on the surface of a sphere,...Ch. 5 - A 28.0-kg block is connected to an empty 2.00-kg...Ch. 5 - A car is heading down a slippery road at a speed...Ch. 5 - What is the acceleration experienced by the tip of...Ch. 5 - An airplane traveling at 480 km/h needs to reverse...Ch. 5 - A banked curve of radius R in a new highway...Ch. 5 - A small head of mass m is constrained to slide...Ch. 5 - Earth is not quite an inertial frame. We often...Ch. 5 - While fishing, you get bored and start to swing a...Ch. 5 - Consider a train that rounds a curve with a radius...Ch. 5 - A car starts rolling down a 1-in-4 hill (1-in-4...Ch. 5 - The sides of a cone make an angle with the...Ch. 5 - A 72kg water skier is being accelerated by a ski...Ch. 5 - A ball of mass m = 1.0 kg at the end of a thin...Ch. 5 - A car drives at a constant speed around a banked...Ch. 5 - (III) The force of air resistance (drag force) on...Ch. 5 - (III) The coefficient of kinetic friction k...Ch. 5 - (III) Assume a net force F = mg kv2 acts during...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Express the unit vectors in terms of (that is, derive Eq. 1.64). Check your answers several ways Also work o...
Introduction to Electrodynamics
Wine glasses can be set into resonance by moistening your finger and rubbing it around the rim of the glass. Wh...
University Physics Volume 1
The amount of charge supplied by the battery.
Physics (5th Edition)
15. In the Olympic shotput event, an athlete throws the shot with an initial speed of 12.0 m/s at a 40.0° angle...
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
10. Why is it important to study physics? Provide a few examples of what an understanding of the physical world...
Applied Physics (11th Edition)
2. Draw a circuit diagram for the circuit of Figure P23.2.
Figure P23.2
College Physics: A Strategic Approach (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 15-7. Crates A and B weigh 100 lb and 50 lb, respectively. If they start from rest, determine their speed when t = 5 s. Also, find the force exerted by crate A on crate B during the motion. The coefficient of kinetic friction between the crates and the ground is µ = 0.25. A P = 50 lbarrow_forwardBlock A in Fig. 6-56 has mass mA = 4.0 kg, and block B has mass mB 2.0 kg.The coefficient of kinetic friction between block B and the horizontal plane is mk= 0.50.The inclined plane is frictionless and at angle u= 30°.The pulley serves only to change the direction of the cord connecting the blocks. The cord has negligible mass. Find (a) the tension in the cord and (b) the magnitude of the acceleration of the blocks.arrow_forward*14-4. The 100-kg crate is subjected to the forces shown. If it is originally at rest, determine the distance it slides in order to attain a speed of v = 8 m/s. The coefficient of kinetic friction between the crate and the surface is He = 0.2. 500 N 400 N 730° 45°arrow_forward
- EXAMPLE 5-11 ESTIMATE Gravity on Everest. Estimate the effective value of g on the top of Mt. Everest, 8850 m (29,035 ft) above sea level (Fig. 5-20). That is, what is the acceleration due to gravity of objects allowed to fall freely at this altitude? Ignore the mass of the mountain itself. APPROACH The force of gravity (and the acceleration due to gravity g) depends on the distance from the center of the Earth, so there will be an effective value g on top of Mt. Everest which will be smaller than g at sea level. We assume the Earth is a uniform sphere (a reasonable "estimate"). SOLUTION We use Eq. 5-5, with r replaced by r = 6380 km + 8.9 km 6389 km 6.389 x 106 m: (6.67 x 10-11 N-m2/kg²)(5.98 x 1024 kg) (6.389 x 10° m) which is a reduction of about 3 parts in a thousand (0.3%). ME 8 = G- = 9.77 m/s, %3D %3D How many Significant Figures are in the answer? Checkarrow_forward•9 0 A 3.5 kg block is pushed along a horizontal floor by a force F of magnitude 15 N at an angle e = 40° with the horizontal (Fig. 6-19). The coefficient of ki- netic friction between the block Flg. 6-19 Problems 9 and 32. and the floor is 0.25. Calculate the magnitudes of (a) the frictional force on the block from the floor and (b) the block's accelération. •10 Figuré 6-20 shows an initially. stationary block of mass m on a floor. A force of magnitude 0.500mg is then applied at upward angle e= 20°. What is the magni- tude of the acceleration of the Flg. 6-20 Problem 10. www. block across the floor if the friction coefficients are (a) u, = 0.600 and u = 0.500 and (b) , = 0.400 and 4 0.300?arrow_forward8arrow_forward
- *•26 00 Figure 6-32 shows three crates being pushed over a concrete floor by a horizontal force F of magnitude 440 N. The masses of the crates are m, = 30.0 kg, m2 = 10.0 kg, and m3 = 20.0 kg. The coeffi- cient of kinetic friction between the floor and each of the crates is 0.700. (a) What is the magnitude F of the force on crate 3 from crate 2? (b) If the crates then slide onto a polished floor, where the coefficient of kinetic friction is less than 0.700, is magni- tude F more than, less than, or the same as it was when the coefficient was 0.700? Fig. 6-31 Problem 25. %3D Flg. 6-32 Problem 26. Frictionless, massless pulleyarrow_forward71 SSM Figure 5-60 shows a box of dirty money (mass m = 3.0 kg) on a frictionless plane inclined at angle 6, = 30°. The box is con- nected via a cord of negligible mass to a box of laundered money (mass m; = 2.0 kg) on a frictionless plane inclined at angle Oz = 60°. The pulley is frictionless and has negligible mass. What is the ten- sion in the cord? Figure 5-60 Problem 71.arrow_forwardThree applied forces, F1 = 20.0 N, F2 = 40.0 N, and F3 = 10.0 N act on an object with a mass of 2.00 kg which can move along an inclined plane as shown in the figure. The questions refer to the instant when the object has moved 0.600 m along the surface of the inclined plane in the upward direction. Neglect friction and use g = 10.0 m/s2.Figure 7-5Refer to Figure 7-5. What is the amount of work done by the force F3 as the object moves up the inclined plane?arrow_forward
- 8-63. Determine the smallest force P that will cause impending motion. The crate and wheel have a mass of 50 kg and 25 kg, respectively. The coefficient of static friction between the crate and the ground is , = 0.2, and between the wheel and the ground, = 0.5. *8-64. Determine the smallest force P that will cause impending motion. The crate and wheel have a mass of 50 kg and 25 kg. respectively. The coefficient of static friction between the crate and the ground is , = 0.5, and between the wheel and the ground μ = 0.3. O O O 127 10 L C A 300 mmarrow_forward3-12. The lift sling is used to hoist a container having a mass of 500 kg. Determine the force in each of the cables AB and AC as a function of 0. If the maximum tension allowed in each cable is 5 kN, determine the shortest length of cables AB and AC that can be used for the lift. The center of gravity of the container is located at G. B -1.5 m • G -1.5 m Prob. 3-12 Carrow_forwardTwo boxes are connected by a rope that passes over a pulley (Figure 6-31). Box #1 is on a ramp inclined at 35° to the horizontal, and the coefficient of kinetic friction between the box and ramp is 0.54. The masses of the boxes are m1 5 2.5 kg and m2 5 5.5 kg. Neglecting the motion of the pulley and assuming that the velocity of each box is in the same direction as its acceleration, what is the magnitude of the acceleration of the boxes?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY