Concept explainers
Interpretation:
Whether more than one compound can be made from atoms of the same two elements according to Dalton’s atomic theory or not is to be stated.
Concept introduction:
Dalton’s atomic theory for
Answer to Problem 1E
More than one compound can be made from atoms of the same two elements according to Dalton’s atomic theory.
Explanation of Solution
The law of multiple proportions was deduced from Dalton’s atomic theory. According to this law, when two elements combine together to form more than one compound, then different weights of one element that combine with a fixed weight of the other element are in the ratio of simple whole numbers. Carbon and oxygen atoms combine in a
According to Dalton’s atomic theory, more than one compound can be made from atoms of the same two elements.
Want to see more full solutions like this?
Chapter 5 Solutions
Introductory Chemistry: An Active Learning Approach
- Two compounds of iron and chlorine, A and B, contain 1.270 g and 1.904 g of chlorine, respectively, for each gram of iron. Show that these amounts are in the ratio 2 : 3. Is this consistent with the law of multiple proportions? Explain.arrow_forwardEach of the following statements is true, but Dalton might have had trouble explaining some of them with his atomic theory. Give explanations for the following statements. a. The space-filling models for ethyl alcohol and dimethyl ether are shown below. These two compounds have die same composition by mass (52% carbon, 13% hydrogen, and 35% oxygen), yet the two have different melting points, boiling points, and solubilities in water. b. Burning wood leaves an ash that is only a small fraction of the mass of the original wood. c. Atoms can be broken down into smaller particles. d. One sample of lithium hydride is 87.4% lithium by mass, while another sample of lithium hydride Ls 74.9% lithium by mass. However, the two samples have the same chemical properties.arrow_forwardGive the complete symbol (XZA), including atomic number and mass number, of (a) a nickel atom with 31 neutrons, and (b) a tungsten atom with 110 neutrons.arrow_forward
- Look around you and identify several objects that you think are probably made from polymers.arrow_forwardCobalt has three radioactive isotopes used in medical studies. Atoms of these isotopes have 30, 31, and 33 neutrons, respectively. Give the complete symbol for each of these isotopes.arrow_forwardClick on the site (http://openstaxcollege.org/l/16PhetAtomMass) and select the Mix Isotopes tab, hide the Percent Composition and Average Atomic Mass boxes, and then select the element boron. Write the symbols of the isotopes of boron that are shown as naturally occurring in significant amounts. Predict the relative amounts (percentages) of these boron isotopes found in nature. Explain the reasoning behind your choice. Add isotopes to the black box to make a mixture that matches your prediction in (b). You may drag isotopes from their bins or click on More and then move the sliders to the appropriate amounts. Reveal the Percent Composition and Average Atomic Mass boxes. How well does your mixture match with your prediction? If necessary, adjust the isotope amounts to match your prediction. Select Nature’s mix of isotopes and compare it to your prediction. How well does your prediction compare with the naturally occurring mixture? Explain. If necessary, adjust your amounts to make them match Nature’s amounts as closely as possible. 21. Repeat Exercise 2.20 using an element that has three naturally occurring isotopes.arrow_forward
- The following isotopes have applications in medicine. Write their symbols in the form XZA. a. cobalt-60 b. phosphorus-32 c. iodine-131 d. sulfur-35arrow_forwardWrite the chemical formula of each of the following: a The compound made up of a crystal with two particles coming from chromium atoms for every three particles coming from oxygen atoms. b The compound made up of a crystal with one particle coming from a barium atom for every two particles coming from chlorine atoms. c The compound made up of molecules with 12 carbon atoms, 22 hydrogen atoms, and 11 oxygen atoms. d The compound made up of molecules with three hydrogen atoms, one phosphorus atom, and four oxygen atoms.arrow_forwardArgon has three naturally occurring isotopes: 0.3336% 36Ar, 0.063% 38Ar, and 99.60% 40Ar. Estimate the average atomic mass of argon. If the masses of the isotopes are 35.968 u, 37.963 u, and 39.962 u, respectively, calculate the average atomic mass of natural argon.arrow_forward
- Write the chemical formula of each of the following: a The compound made up of a crystal with one particle coming from a nickel atom for every two particles coming from chlorine atoms. b The compound made up of a crystal with two particles coming from silver atoms for every one particle coming from an oxygen atom. c The compound made up of molecules with six carbon atoms, 12 hydrogen atoms, and six oxygen atoms. d The compound made up of molecules with two hydrogen atoms, one sulfur atom, and four oxygen atoms.arrow_forwardClick on the site (http://openstaxcollege.org/l/16PhetAtomMass) and select the Mix Isotopes tab, hide the Percent Composition and Average Atomic Mass boxes, and then select the element boron. Write the symbols of the isotopes of boron that are shown as naturally occurring in significant amounts. Predict the relative amounts (percentages) of these boron isotopes found in nature. Explain the reasoning behind your choice. Add isotopes to the black box to make a mixture that matches your prediction in (b). You may drag isotopes from their bins or click on More and then move the sliders to the appropriate amounts. Reveal the Percent Composition and Average Atomic Mass boxes. How well does your mixture match with your prediction? If necessary, adjust the isotope amounts to match your prediction. Select Nature’s mix of isotopes and compare it to your prediction. How well does your prediction compare with the naturally occurring mixture? Explain. If necessary, adjust your amounts to make them match Nature’s amounts as closely as possible.arrow_forwardIs it possible for the same Iwo elements to form more than one compound? Is this consistent with Dalton’s atomic theory? Give an example.arrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning