Liquid HFC-134a at its boiling point at 12 bars pressure is throttled to 1 bar pressure. What is the final temperature? What fraction of liquid vaporizes?
The final temperature and the fraction of liquid that vaporizes.
Answer to Problem 29P
Explanation of Solution
Given:
Initial pressure, P =12 bars
Final pressure, P = 1 bar
Formula used:
Here, a is the fraction of the HFC-134a, which ends up as liquid.
Calculation:
Initial temperature and enthalpy of the HFC-134a at the pressure of 12.0 bar using table 4.3 is as follows:
The final temperature HFC-134a at the pressure of 12.0 bar is as follows:
Hence, the final temperature of the liquid HFC-134a is
At the boiling point, the enthalpy of the liquid phase of HFC-134a at the final pressure of 1.0bar is 16 kJ while thatof the gas phase would be 231 kJ.
The enthalpy is conserved to a throttling process. The initial enthalpy of the liquid HFC-134a116 kJlies between 16 kJ and 231 kJ.The final state of the HFC-134a is a combination of liquid and gas at the boiling point
Substitute
The initial and final enthalpies of HFC-134a are equal to each other.
Substitute
Solve the equation for a
Hence, the fraction of liquid vaporizes is as follows:
Therefore, thefraction of the liquid vaporizes is0.465.
Conclusion:
Thus, the liquid vaporization is
Want to see more full solutions like this?
Chapter 4 Solutions
An Introduction to Thermal Physics
Additional Science Textbook Solutions
Chemistry: Structure and Properties (2nd Edition)
Biology: Life on Earth (11th Edition)
Microbiology: An Introduction
Microbiology: An Introduction
Human Anatomy & Physiology (2nd Edition)
Fundamentals of Anatomy & Physiology (11th Edition)
- 3. You are in a tall building located near the equator. As you ride an elevator from the ground floor to the top floor, your tangential speed due to the earth's rotation a. increases b. decreases increases when the speed of the elevator increases and decreases when the speed of the elevator decreases d. does not changearrow_forward2. Two points are located on a rigid wheel that is rotating with decreasing angular velocity about a fixed axis. Point A is located on the rim of the wheel and point B is halfway between the rim and the axis. Which one of the following statements concerning this situation is true? A B Both points have the same centripetal acceleration. b. Both points have the same tangential acceleration. The angular velocity at point A is greater than that of point B. d. Both points have the same instantaneous angular velocity. Each second, point A turns through a greater angle than point B. e.arrow_forward4. Two hoops, starting from rest, roll down identical inclined planes. The work done by nonconservative forces, such as air resistance, is zero (Wnc = 0 J). Both have the same mass M, but, as the drawing shows, one hoop has twice the radius as the other. The moment of inertia for each hoop is I = Mr², where r is its radius. Which, if either, has the greater total kinetic energy (translational plus rotational) at the bottom of the incline? Radius=R Mass = M Radius=R Mass = Marrow_forward
- 5. A uniform disk, a thin hoop, and a uniform solid sphere, all with the same mass and same outer radius, are each free to rotate about a fixed axis through its center. Assume the hoop is connected to the rotation axis by light spokes. With the objects starting from rest, identical forces are simultaneously applied to the rims, as shown. Rank the objects according to their angular velocities after a given time t, least to greatest. a. disk, sphere, hoop b. hoop, sphere, disk c. sphere, disk, hoop d. hoop, disk, sphere e. disk, hoop, spherearrow_forward1. Two cars are traveling at the same constant speed v. As the drawing above indicates, car A is moving along a straight section of the road, while car B is rounding a circular turn. Which statement is true about the accelerations of the cars? B A a. The acceleration of both cars is zero, since they are traveling at a constant speed. b. Car A is accelerating, but car B is not accelerating. c. Car A is not accelerating, but car B is accelerating. d. Both cars are accelerating.arrow_forward6. A wheel rolls without slipping along a horizontal road as shown. The velocity of the center of the wheel is represented by v. Point P is painted on the rim of the wheel. The direction of the instantaneous velocity of point P is: a. b. C. d. öö j e. ↑ ↑ ↓arrow_forward
- No chatgptarrow_forwardG Remaxi: hatdirkst poed of Cha pital of te wendb axcels does ha taxaxxeaza s in Kirarais Avite v) askaly fearbe Add to search 4) Kom me TUTHICAL NOW HISE is the ball moving at the highest point in its trajectory if air resistance is negligible? 3) Constant Acceleration Kinematics: In a ballistics test, a bullet moving horizontally with a speed of 500 m/s strikes a sandbag and penetrates a distance of 10.0 cm. (a) What is the magnitude of the average acceleration of the bullet in the sandbag? (b) How many milliseconds does it take the bullet to come to rest in the sandbag? 4) Constant Acceleration Kinematics: A car with good tires on a dry road can decelerate (slow down) at a steady rate of about 5.0 m/s2 when braking. If a car is initially traveling at 55 mi/h (a) how much time does it take the car to stop? (b) what is its stopping distance? XA Translate Q Search Homework Best Wishes < 7:01 Google Lens 100 5G+ 43arrow_forwardan with an mal velocity of 32 m/s at 35° from the vertical. How fast is the ball moving at the highest point in its trajectory if air resistance is negligible? 3) Constant Acceleration Kinematics: In a ballistics test, a bullet moving horizontally with a speed of 500 m/s strikes a sandbag and penetrates a distance of 10.0 cm. (a) What is the magnitude of the average acceleration of the bullet in the sandbag? (b) How many milliseconds does it take the bullet to come to rest in the sandbag? 4) Constant Acceleration Kinematics: A car with good tires on a dry road can decelerate (slow down) at a steady rate of about 5.0 m/s2 when braking. If a car is initially traveling at 55 mi/h di bawa (a) how much time does it take the car to stop? (b) what is its stopping distance? 2)」 3) 2 9 6) 4) - Best Wishesarrow_forward
- 6. A meter stick whose mass is 0.200 kg is supported at the zero cm mark by a knife edge and a force F at the 100 cm point. A mass of 700 grams is attached to the stick at the 40 cm mark. Find the magnitude of N and F in Newtons. Magnitude of N N Newtons, Magnitude of F Newtons F itions for 40 cm 700 gm 100 cmarrow_forward5. Masses of 100 and 500 grams are placed at 0 cm and 100 cm points of a meter stick What is the value of F in Newtons? The meter stick is uniform and has a mass of 80 respectively. Where must a single vertical force be placed to achieve a balance? grams. Position of F cm, Magnitude of F Newtons 0 cm 100 cm F 500gm 100 gmarrow_forward1 and A massive spring of mass M, natural length L spring constant ķ is hung vertically from the ceiling. By how much does it stretch under its own weight?arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning