EBK PHYSICS FOR SCIENTISTS & ENGINEERS
5th Edition
ISBN: 9780134296074
Author: GIANCOLI
Publisher: VST
expand_more
expand_more
format_list_bulleted
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A freezer is on a pair of supports in A and a pair of supports in B. The weights of various parts of the freezer are shown. Neglecting friction, determine the reactions on each pair of supports.
1. Two slots have been cut in the plate shown. The plate has been placed so that the slots fit two
fixed frictionless pins. Determine the force each pin exerts on the plate and the reaction at the
roller support.
50 N 70 mm
100 mm
100 mm
30°
A
|B
200 mm
C
100 mm
30°
50 N
180 mm
220 mm
Consider a 25-kg block on a frictionless inclined plane held in place by a steel cable as shown in the figure. The cable is parallel to the surface of the incline. What is the magnitude of
the tension on the steel cable?
25 kg
30°
212 N
O 245 N
O none of the choices
O 123 N
O 458 N
Chapter 4 Solutions
EBK PHYSICS FOR SCIENTISTS & ENGINEERS
Ch. 4.4 - Suppose you watch a cup slide on the (smooth)...Ch. 4.5 - Prob. 1BECh. 4.5 - If you push on a heavy desk, does it always push...Ch. 4.5 - Return to the first Chapter-Opening Question, page...Ch. 4.7 - Prob. 1FECh. 4.7 - Prob. 1GECh. 4.7 - Prob. 1HECh. 4 - Why does a child in a wagon seem to fall backward...Ch. 4 - If an object is moving, is it possible for the net...Ch. 4 - If the acceleration of an object is zero, are no...
Ch. 4 - Only one force acts on an object. Can the object...Ch. 4 - When a golf ball is dropped to the pavement, it...Ch. 4 - If you walk along a log floating on a lake, why...Ch. 4 - (a) Why do you push down harder on the pedals of a...Ch. 4 - Prob. 9QCh. 4 - The force of gravity on a 2-kg rock is twice as...Ch. 4 - Prob. 11QCh. 4 - When an object falls freely under the influence of...Ch. 4 - Compare the effort (or force) needed to lift a...Ch. 4 - When you stand still on the ground, how large a...Ch. 4 - Whiplash sometimes results from an automobile...Ch. 4 - Mary exerts an upward force of 40N to hold a bag...Ch. 4 - A father and his young daughter are ice skating....Ch. 4 - Prob. 19QCh. 4 - Which of the following objects weighs about 1 N:...Ch. 4 - Why might your foot hurt if you kick a heavy desk...Ch. 4 - When you are running and want to slop quickly, you...Ch. 4 - Suppose that you are standing on a cardboard...Ch. 4 - Prob. 2MCQCh. 4 - Prob. 3MCQCh. 4 - Prob. 4MCQCh. 4 - Prob. 5MCQCh. 4 - Prob. 7MCQCh. 4 - Prob. 9MCQCh. 4 - Prob. 10MCQCh. 4 - Prob. 11MCQCh. 4 - Prob. 12MCQCh. 4 - Prob. 13MCQCh. 4 - Prob. 1PCh. 4 - Prob. 2PCh. 4 - Prob. 3PCh. 4 - Prob. 4PCh. 4 - Prob. 5PCh. 4 - Prob. 6PCh. 4 - (II) Superman must stop a 120-km/h train in 150 m...Ch. 4 - Prob. 8PCh. 4 - Prob. 9PCh. 4 - Prob. 10PCh. 4 - (II) A fisherman yanks a fish vertically out of...Ch. 4 - Prob. 12PCh. 4 - (II) A 20.0-kg box rests on a table. (a) What is...Ch. 4 - (II) A particular race car can cover a...Ch. 4 - Prob. 15PCh. 4 - Prob. 16PCh. 4 - Prob. 17PCh. 4 - (II) Can cars stop on a dime? Calculate the...Ch. 4 - Prob. 19PCh. 4 - (II) Using focused laser light, optical tweezers...Ch. 4 - Prob. 21PCh. 4 - Prob. 22PCh. 4 - Prob. 23PCh. 4 - (II) An exceptional standing jump would raise a...Ch. 4 - (II) High-speed elevators function under two...Ch. 4 - Prob. 26PCh. 4 - Prob. 27PCh. 4 - Prob. 28PCh. 4 - (I) Draw the free-body diagram for a basketball...Ch. 4 - (I) A 650-N force acts in a northwesterly...Ch. 4 - (I) Sketch the tree body diagram of a baseball (a)...Ch. 4 - Prob. 32PCh. 4 - Prob. 33PCh. 4 - Prob. 34PCh. 4 - (II) The cords accelerating the buckets in Problem...Ch. 4 - Prob. 36PCh. 4 - (II) A train locomotive is pulling two cars of the...Ch. 4 - Prob. 38PCh. 4 - (II) A skateboarder, with an initial speed of...Ch. 4 - (II) At the instant a race began, a 65-kg sprinter...Ch. 4 - (II) A mass m is at rest on a horizontal...Ch. 4 - Prob. 42PCh. 4 - (II) A 27-kg chandelier hangs from a ceiling on a...Ch. 4 - (II) Redo Example 413 but (a) set up the equations...Ch. 4 - (II) The block shown in Fig. 4-43 has mass m = 7.0...Ch. 4 - Prob. 46PCh. 4 - Prob. 47PCh. 4 - Prob. 48PCh. 4 - Prob. 49PCh. 4 - (II) As shown in Fig. 4-41, five balls (masses...Ch. 4 - A super high-speed 14-car Italian train has a mass...Ch. 4 - Prob. 52PCh. 4 - Prob. 53PCh. 4 - (II) A child on a sled reaches the bottom of a...Ch. 4 - Prob. 55PCh. 4 - Prob. 56PCh. 4 - (III) Determine a formula for the acceleration of...Ch. 4 - (III) Suppose the pulley in Fig. 446 is suspended...Ch. 4 - Prob. 59PCh. 4 - (II) Three blocks on a frictionless horizontal...Ch. 4 - Prob. 61PCh. 4 - (III) A small block of mass m rests on the sloping...Ch. 4 - (III) The double Atwood machine shown in Fig. 4-48...Ch. 4 - (III) Determine a formula for the magnitude of the...Ch. 4 - Prob. 65PCh. 4 - Prob. 66PCh. 4 - Prob. 67GPCh. 4 - Prob. 69GPCh. 4 - Prob. 70GPCh. 4 - Prob. 71GPCh. 4 - Prob. 72GPCh. 4 - Prob. 73GPCh. 4 - Prob. 74GPCh. 4 - Prob. 75GPCh. 4 - A block (mass mA) lying on a fixed frictionless...Ch. 4 - Prob. 77GPCh. 4 - Prob. 78GPCh. 4 - (a) What minimum force F is needed to lift the...Ch. 4 - Prob. 80GPCh. 4 - A jet aircraft is accelerating at 3.8m/s2 as it...Ch. 4 - Prob. 82GPCh. 4 - Prob. 83GPCh. 4 - A fisherman in a boat is using a 10-lb test...Ch. 4 - Prob. 85GPCh. 4 - Prob. 86GPCh. 4 - Prob. 87GPCh. 4 - Prob. 88GPCh. 4 - Prob. 90GPCh. 4 - Prob. 91GPCh. 4 - Prob. 92GPCh. 4 - Prob. 93GPCh. 4 - Prob. 94GP
Knowledge Booster
Similar questions
- A sphere of mass 4.9 × 104 kg is suspended from a cord. A steady horizontal breeze pushes the sphere so that the cord makes a constant angle of 22° with the vertical. Find (a) the magnitude of that push and (b) the tension in the cord. (a) Number i 19.4 Units N (b) Number i 51.79 Unitsarrow_forwardA laboratory on the concept of static equilibrium uses an apparatus called a force table. The force table consists of a round, level platform marked in degree increments about its circumference. In the center of the table sits a massless ring, to which three strings are tied. Each string is strung over a separate pulley clamped to the edge of the platform, and then tied to a freely-hanging mass, so that each string is under tension and the ring is suspended parallel to the table surface. A mass of ?1 =0.145 kg is located at ?1 =26.5∘ , and a second mass of ?2 =0.227 kg is located at ?2=283∘ . Calculate the mass ?3 and the angular position ?3 (in degrees) that will balance the system and hold the ring stationary over the center of the platform.arrow_forwardA pulley is attached to one end of a rough plank, which makes an angle of 34° with the horizontal. A box is held at rest on the plank by a string that is attached to the box and passes over the pulley. A bucket of water is attached to the other end of the string and hangs freely. The coefficient of static friction between the plank and the box is 0.8. The box remains at rest but is on the point of slipping up the plank. The bucket of water has mass 7.5 kg. pulley box bucket of water 34° Model the box and the bucket of water as particles, the string as a model string and the pulley as a model pulley. (a) By considering the forces acting on the bucket of water, find the magnitude of the tension in the string (in newtons) in terms of g and the magnitude of the acceleration due to gravity (in ms-2). (b) State the four forces that act on the box and draw a force diagram showing them, including the angles that show their directions. (c) Take the unit vector i to be in the direction up the…arrow_forward
- An object hangs between two walls which are 1.8 m apart. If the rope sags 15° below horizontal and the object’s mass is 1.5 kg, what is the tension in the rope?arrow_forwardAnnabeth hangs her dress outside to dry for her coming birthday. The dress weighs 11.77 N and creates an angle of 24° on both sides from the horizontal. What is the value of the y-component to suspend the dress in the air, leaving it in an equilibrium state? O 8.85 N O 7.49 N O No answer O 5.50 N O 4.79 Narrow_forwardTo assess a patient who is suspected of having heart disease, the physician must examine the cardiac function when (a) the patient is at rest with a heart beating at a normal pace, and (b) when under stress, for example, after exercise. To simulate the conditions of stress, the patient exercises by walking a treadmill to increase heart beat and sustain high levels of cardiac stress. Suppose a 50 kg patient exercises on the treadmill, angled at 30◦ from the ground, exerting a constant force of 500 N up the slope of the treadmill while running a constant velocity of 4 m/s along the treadmill for 5 minutes. The coefficient of friction of the treadmill is µs = 0.45. Determine the work done by the patient.arrow_forward
- A pulley is attached to one end of a rough plank, which makes an angle of 34◦ with the horizontal. A box is held at rest on the plank by a string that is attached to the box and passes over the pulley. A bucket of water is attached to the other end of the string and hangs freely. The coefficient of static friction between the plank and the box is 0.8. The box remains at rest but is on the point of slipping up the plank. The bucket of water has mass 7.5 kg.Name the four forces acting upon the box and draw a force diagram showing them, including the angles that show their directions.arrow_forwardA desperate hiker has to think fast to help his friend who has fallen below him. Quickly, he ties m, a rope to a rock of mass m, = 3.90 x 10? kg and makes his way over the ledge (see the figure). If the coefficient of static friction between the rock and the ground is µs = 0.283, and the mass of the hiker is m, = 70.1 kg, what is the maximum mass of the friend m; that the rock can hold so the hikers can then make their way up over the ledge? Assume the rope is parallel to the ground and the point where the rope passes over the ledge is frictionless. kg IIarrow_forwardA 25kg wooden plate is held in place by two strings attached to the ceiling and the wall. The string attached to the ceiling makes an angle 40o with the horizontal and the string attached to the wall makes 90o with the wall. Determine the force in each string.arrow_forward
- The cord passing over the two small pegs A and B on the board is subjected to a tension of 10 lb. Determine the minimum tension P and the orientation u of the cord passing over pegs C and D, so that the resultant couple produced by both cords is 20 lb in. clockwise. -P 10 lb 30° A 15 in. 45° 15 in. B D 30° 10 lb 0 Parrow_forwardOn the way to Hilton Head, S.C. for Spring Break, your car breaks down in the middle of nowhere. A tow truck weighing 4500 lbs comes along and agrees to tow your car, which weighs 1800 lbs, to the nearest town. The driver of the truck attaches his cable to your car at an angle of 22° from the horizontal. He tells you that his cable has a strength of 550 lbs. He plans to take 10 seconds to tow your car at a constant acceleration from rest, in a straight line along the flat road, until he reaches the maximum speed limit of 45 miles/hour. Can the driver carry out his plan? You assume that rolling friction behaves like kinetic friction, and the coefficient of rolling friction between your tires and the road is 0.10.arrow_forwardYou have a light spring which obeys Hooke's law. This spring stretches 2.78 cm vertically when a 2.70 kg object is suspended from it. Determine the following. (a) the force constant of the spring (in N/m) What force causes the spring to stretch? What force does the spring exert on the hanging object? Can you write a relationship between these two forces? N/m (b) the distance (in cm) the spring stretches if you replace the 2.70 kg object with a 1.35 kg object cm (c) the amount of work (in J) an external agent must do to stretch the spring 8.40 cm from its unstretched positionarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON