EBK PHYSICS FOR SCIENTISTS & ENGINEERS
5th Edition
ISBN: 9780134296074
Author: GIANCOLI
Publisher: VST
expand_more
expand_more
format_list_bulleted
Concept explainers
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A skier starts stationary at the top of a 20 m long slope and begins to descend. The
skier's acceleration is 0.2 m/s?. At the bottom of the slope the skier glides under a
frictional deceleration of 0.1 m/s?.
(1) Calculate the speed of the skier at the bottom of the slope.
(ii) Calculate how far the skier glides before coming to rest.
An athlete of mass 70 kg begins to run, and is observed to have velocity over the first 5
strides of 3.0, 4.2, 5.0, 5.6, and 6.0 m/s. For each stride calculate the net impulse delivered
due to the horizontal ground reaction force.
(2) Four dollies (A, B, C and D) on a plane are connected by three ropes, ropes 1, 2 and
3, as shown in the diagram. The rightmost dolly is powered and pulled in the overall
rightward direction by a force of magnitude F. The 4 dollies accelerate with the same
acceleration. The friction between the ground and the dolly is negligible. At this point,
answer the following questions. The rope does not stretch and the mass of the rope is
neglected.<
台車D
m4
ロープ3
m3
台車C
ロープ2
m2
台車B
ロープ1
m1
台車A
F
At this point, increase the strength of the F. Which rope breaks first. The ropes are all of
the same strength.<
(3) With all four trolleys of the same mass m, establish the equation of motion for each
trolley in the right-hand direction of the paper. The right direction of the paper is the x-
direction and only the equation of motion in the x-direction is derived. Also, include the
tension of the rope between A and B as the tension of the rope between B and C and the
tension of the rope between C and…
(B) A maintenance man (climber) tries to maintain one of the power stations iocated at the
top of the mountain in the situation of winter. During his work and by mistake drops his
water bottle which then slides 100 M down the side of a steep icy slope to a point which is
10 m lower than the climber's position. The mass of the climber is 60 kg and his water bottle
has a mass of 500 g.
1) If the bottle starts from rest, how fast is it travelling by the time it reaches the bottom
of the slope? (Neglect friction.)
What is the total change in the climber's potential energy as she climbs down the mountain
to fetch her fallen water bottle? i.e. what is the difference between her potential energy at
the top of the slope and the bottom of the slope? Analysis all the above situation.
Chapter 4 Solutions
EBK PHYSICS FOR SCIENTISTS & ENGINEERS
Ch. 4.4 - Suppose you watch a cup slide on the (smooth)...Ch. 4.5 - Prob. 1BECh. 4.5 - If you push on a heavy desk, does it always push...Ch. 4.5 - Return to the first Chapter-Opening Question, page...Ch. 4.7 - Prob. 1FECh. 4.7 - Prob. 1GECh. 4.7 - Prob. 1HECh. 4 - Why does a child in a wagon seem to fall backward...Ch. 4 - If an object is moving, is it possible for the net...Ch. 4 - If the acceleration of an object is zero, are no...
Ch. 4 - Only one force acts on an object. Can the object...Ch. 4 - When a golf ball is dropped to the pavement, it...Ch. 4 - If you walk along a log floating on a lake, why...Ch. 4 - (a) Why do you push down harder on the pedals of a...Ch. 4 - Prob. 9QCh. 4 - The force of gravity on a 2-kg rock is twice as...Ch. 4 - Prob. 11QCh. 4 - When an object falls freely under the influence of...Ch. 4 - Compare the effort (or force) needed to lift a...Ch. 4 - When you stand still on the ground, how large a...Ch. 4 - Whiplash sometimes results from an automobile...Ch. 4 - Mary exerts an upward force of 40N to hold a bag...Ch. 4 - A father and his young daughter are ice skating....Ch. 4 - Prob. 19QCh. 4 - Which of the following objects weighs about 1 N:...Ch. 4 - Why might your foot hurt if you kick a heavy desk...Ch. 4 - When you are running and want to slop quickly, you...Ch. 4 - Suppose that you are standing on a cardboard...Ch. 4 - Prob. 2MCQCh. 4 - Prob. 3MCQCh. 4 - Prob. 4MCQCh. 4 - Prob. 5MCQCh. 4 - Prob. 7MCQCh. 4 - Prob. 9MCQCh. 4 - Prob. 10MCQCh. 4 - Prob. 11MCQCh. 4 - Prob. 12MCQCh. 4 - Prob. 13MCQCh. 4 - Prob. 1PCh. 4 - Prob. 2PCh. 4 - Prob. 3PCh. 4 - Prob. 4PCh. 4 - Prob. 5PCh. 4 - Prob. 6PCh. 4 - (II) Superman must stop a 120-km/h train in 150 m...Ch. 4 - Prob. 8PCh. 4 - Prob. 9PCh. 4 - Prob. 10PCh. 4 - (II) A fisherman yanks a fish vertically out of...Ch. 4 - Prob. 12PCh. 4 - (II) A 20.0-kg box rests on a table. (a) What is...Ch. 4 - (II) A particular race car can cover a...Ch. 4 - Prob. 15PCh. 4 - Prob. 16PCh. 4 - Prob. 17PCh. 4 - (II) Can cars stop on a dime? Calculate the...Ch. 4 - Prob. 19PCh. 4 - (II) Using focused laser light, optical tweezers...Ch. 4 - Prob. 21PCh. 4 - Prob. 22PCh. 4 - Prob. 23PCh. 4 - (II) An exceptional standing jump would raise a...Ch. 4 - (II) High-speed elevators function under two...Ch. 4 - Prob. 26PCh. 4 - Prob. 27PCh. 4 - Prob. 28PCh. 4 - (I) Draw the free-body diagram for a basketball...Ch. 4 - (I) A 650-N force acts in a northwesterly...Ch. 4 - (I) Sketch the tree body diagram of a baseball (a)...Ch. 4 - Prob. 32PCh. 4 - Prob. 33PCh. 4 - Prob. 34PCh. 4 - (II) The cords accelerating the buckets in Problem...Ch. 4 - Prob. 36PCh. 4 - (II) A train locomotive is pulling two cars of the...Ch. 4 - Prob. 38PCh. 4 - (II) A skateboarder, with an initial speed of...Ch. 4 - (II) At the instant a race began, a 65-kg sprinter...Ch. 4 - (II) A mass m is at rest on a horizontal...Ch. 4 - Prob. 42PCh. 4 - (II) A 27-kg chandelier hangs from a ceiling on a...Ch. 4 - (II) Redo Example 413 but (a) set up the equations...Ch. 4 - (II) The block shown in Fig. 4-43 has mass m = 7.0...Ch. 4 - Prob. 46PCh. 4 - Prob. 47PCh. 4 - Prob. 48PCh. 4 - Prob. 49PCh. 4 - (II) As shown in Fig. 4-41, five balls (masses...Ch. 4 - A super high-speed 14-car Italian train has a mass...Ch. 4 - Prob. 52PCh. 4 - Prob. 53PCh. 4 - (II) A child on a sled reaches the bottom of a...Ch. 4 - Prob. 55PCh. 4 - Prob. 56PCh. 4 - (III) Determine a formula for the acceleration of...Ch. 4 - (III) Suppose the pulley in Fig. 446 is suspended...Ch. 4 - Prob. 59PCh. 4 - (II) Three blocks on a frictionless horizontal...Ch. 4 - Prob. 61PCh. 4 - (III) A small block of mass m rests on the sloping...Ch. 4 - (III) The double Atwood machine shown in Fig. 4-48...Ch. 4 - (III) Determine a formula for the magnitude of the...Ch. 4 - Prob. 65PCh. 4 - Prob. 66PCh. 4 - Prob. 67GPCh. 4 - Prob. 69GPCh. 4 - Prob. 70GPCh. 4 - Prob. 71GPCh. 4 - Prob. 72GPCh. 4 - Prob. 73GPCh. 4 - Prob. 74GPCh. 4 - Prob. 75GPCh. 4 - A block (mass mA) lying on a fixed frictionless...Ch. 4 - Prob. 77GPCh. 4 - Prob. 78GPCh. 4 - (a) What minimum force F is needed to lift the...Ch. 4 - Prob. 80GPCh. 4 - A jet aircraft is accelerating at 3.8m/s2 as it...Ch. 4 - Prob. 82GPCh. 4 - Prob. 83GPCh. 4 - A fisherman in a boat is using a 10-lb test...Ch. 4 - Prob. 85GPCh. 4 - Prob. 86GPCh. 4 - Prob. 87GPCh. 4 - Prob. 88GPCh. 4 - Prob. 90GPCh. 4 - Prob. 91GPCh. 4 - Prob. 92GPCh. 4 - Prob. 93GPCh. 4 - Prob. 94GP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 60.0 kg skier with an initial speed of 15.5 m/s coasts up a 2.50 m high rise Find her final speed right at the top, in meters per second, given that the coefficient of friction between her skis and the snow is 0.37arrow_forwardA train is traveling up a 2.88° incline at a speed of 4.31 m>s whenthe last car breaks free and begins to coast without friction. (a) Howmuch time does it take for the last car to come to rest momentarily? (b) How far did the last car travel before momentarily coming to rest?arrow_forwardA crate is pushed up a frictionless inclined plane with initial speed of 4 m/s. The angle of incline is 30 degrees. (a) What is its speed when it gets back to the bottom? (b) How far up the plane does the block go? (c) How long does it take to get there?arrow_forward
- A city planner is working on the redesign of a hilly portion of a city. An important consideration is how steep the roads can be so that even low-powered cars can get up the hills without slowing down. A particular small car, with a mass of 920 kg, can accelerate on a level road from rest to 21m/s(75Km/h) in 12.5 s. Using these data, calculate the maximum steepness of a hill.arrow_forwardA particle of mass 3 kg moving in a straight line decelerates uniformly from a speed of 40 m/s to 20 m/s in a distance of 300 m. Before it comes to rest, it will travel a further distance pf ( Hand written in clean writing)arrow_forwardA frictionless plane is 10.0 m long and inclined at 30.0°. A sled starts at the bottom with an initial speed of 5.50 m/s up the incline. When the sled reaches the point at which it momentarily stops, a second sled is released from the top of the incline with an initial speed v. Both sleds reach the bottom of the incline at the same moment. (b) Determine, in m/s, the initial speed of the second sled.arrow_forward
- A net horizontal force of 5000N is applied to a stalled car whose mass is 1500kg. What will be the car's speed after 10s?arrow_forwardA car is travelling with an initial speed of 25 m/s [fwd], when the driver spots a squirrel in the road, 48 m ahead. The driver immediately slams on the brakes, locking the wheels, and causing the car to “skid” (slide along the road). The coefficient of kinetic friction between the tires and the level, wet road is 0.60. Will the car hit the squirrel?arrow_forwardAT an accident scene on a level road, investigators measure a car's slid mark to be 78 m long. It was a rainy day and the coefficient of friction was estimated to be .30. (a) Use these data to determine the speed of the car when the driver slammed on (and locked) the brakes. (b) Why does the car's mass not matter? (c) What is wrong with a car that skids?arrow_forward
- A basketball player jumps straight up for a ball. To do this, he lowers his body 0.270 m and then accelerates through this distance by forcefully straightening his legs. This player leaves the floor with a vertical velocity sufficient to carry him 0.940 m above the floor.arrow_forward5) On a frictionless incline, an object with mass of 10.0 kg slides a total distance of 5.00 m before reaching the bottom of the incline. When it reaches the bottom of the incline, the object has a speed of 7.00 m/s. What is the angle that the incline makes with the horizontal?arrow_forwardA pebble is dropped from rest from the lop of a tall cliff and falls 4.9 m after 1.0 s has elapsed. How much farther does it drop in the next 2.0 s? (a) 9.8 111 (b) 19.6 in (c) 39 in (d) 44 m (e) none of (he abovearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Work and Energy - Physics 101 / AP Physics 1 Review with Dianna Cowern; Author: Physics Girl;https://www.youtube.com/watch?v=rKwK06stPS8;License: Standard YouTube License, CC-BY